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Abstract. A combination of two complex normalized least mean square (NLMS) adaptive filters that adapt on the same input signal
at the same time is investigated. One of the filters has a large and the other one has a small step size. The outputs of the filters
are combined together through a mixing parameter λ . This combination is an interesting new way of achieving simultaneously a
fast initial convergence and a small steady state error of an adaptive algorithm. The mixing parameter is computed from the output
signals of the individual filters. The expressions characterizing the time evolution of the mean square deviation and the excess mean
square error of the combination scheme are derived. The theoretical results are verified by simulations.
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1. INTRODUCTION

When designing an adaptive algorithm, one faces a trade-off between the initial convergence speed and the
mean-square error in steady state. In case of algorithms belonging to the least mean square (LMS) family
this trade-off is controlled by the step-size parameter. A large step size leads to a fast initial convergence but
the algorithm also exhibits a large mean-square error in the steady state, and on the contrary, a small step
size slows down the convergence but results in a small steady state error [1,2].

Variable step size adaptive schemes offer a possible solution allowing achieving both fast initial
convergence and low steady state misadjustment [3–7]. How successful these schemes are depends on how
well the algorithm is able to estimate the distance of the adaptive filter weights from the optimal solution.
The variable step size algorithms use different criteria for calculating the proper step size at any given time
instance. For example, squared instantaneous errors have been used in [4] and the squared autocorrelation
of errors at adjacent time instances have been used in [6]. Paper [5] investigates an algorithm that changes
the time-varying convergence parameters in such a way that the change is proportional to the negative of
the gradient of the squared estimation error with respect to the convergence parameter. In [7] the norm of
the projected weight error vector is used as a criterion to determine how close the adaptive filter is to its
optimum performance.

Recently there has been an interest in a combination scheme that is able to optimize the trade-off between
the convergence speed and the steady state error [8]. The scheme consists of two adaptive filters that are
simultaneously applied to the same inputs as depicted in Figure 1. One of the filters has a large step size
allowing fast convergence and the other one has a small step size for a small steady state error. The outputs
of the filters are combined through a mixing parameter λ . The performance of this scheme has been studied
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Fig. 1. The combined adaptive filter.

for some parameter update schemes [9–11]. Paper [9] uses convex combination, i.e., λ is constrained to lie
between 0 and 1. Paper [10] presents a transient analysis of a slightly modified version of this scheme. The
parameter λ is in those studies found by using an LMS-type adaptive scheme and computing the sigmoidal
function of the result. Another approach by computing the mixing parameter using an affine combination
is provided in [11]. This paper uses the ratio of time averages of the instantaneous errors of the filters. The
error function of the ratio is computed to obtain λ .

In [12] a convex combination of two adaptive filters with different adaptation schemes has been
investigated with the aim of improving the steady state characteristics. One of the adaptive filters uses the
LMS algorithm and the other one the Generalized Normalized Gradient Decent algorithm. The combination
parameter λ is computed, using stochastic gradient adaptation. In [13] the convex combination of two
adaptive filters is applied in a variable filter length scheme to gain improvements in low signal to noise
ratio conditions. In [14] the combination has been used to join two affine projection filters with different
regularization parameters. Paper [15] uses the combination on parallel binary structured LMS algorithms.
These three works use the LMS-like scheme of [16] to compute λ .

It should be noted that schemes involving two filters have been proposed earlier [17,18]. However, in
those early schemes only one of the filters was adaptive, while the other used fixed filter weights. The
updating of the fixed filter was accomplished by copying all coefficients from the adaptive filter, when the
adaptive filter was performing better than the fixed one.

In the present paper the mixing parameter λ is computed from output signals of the individual filters.
The way of calculating the mixing parameter is optimal in the sense that it results from minimization of
the mean-squared error of the combined filter. The scheme was independently proposed in [19] and [20];
the steady state performance of it was investigated in [21] and the tracking performance in [22]. In [23]
the output signal based combination was used in the adaptive line enhancer. Those papers investigate the
behaviour of the adaptive combination scheme in steady state, i.e., in the situation when discrete time n
approaches infinity. In the main body of this paper, on the other hand, a transient analysis of the algorithm
is given, i.e., the formulae, predicting the entire course of adaptation, not only steady state, are derived.

It will be assumed throughout the paper that the signals are complex-valued and the combination scheme
uses two normalized LMS (NLMS) adaptive filters. The italic, boldface lower-case, and boldface upper-
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case letters will be used for scalars, column vectors, and matrices, respectively. The superscript T denotes
transposition of a matrix, the operator E[·] denotes mathematical expectation, and tr[·] stands for trace of a
matrix.

2. ALGORITHM

Let us consider two adaptive filters, as shown in Figure 1, each of them updated using the NLMS adaptation
rule

wi(n) = wi(n−1)+
µi

xT (n)x(n)
e∗i (n)x(n), (1)

ei(n) = d(n)−wH
i (n−1)x(n), (2)

d(n) = wH
o x(n)+ v(n). (3)

In the above, wi(n) is the N vector of coefficients of the ith adaptive filter, with i = 1,2. The vector
wo is the true weight vector we aim to identify with our adaptive scheme and x(n) is the known N input
vector, common for both adaptive filters. The input process is assumed to be a zero mean wide sense
stationary Gaussian process. The desired signal d(n) is a sum of the output of the filter to be identified and
the Gaussian, zero mean independent an identically distributed (i.i.d.) measurement noise that is statistically
independent of all other signals. The step size of the ith adaptive filter is denoted by µi. We assume without
loss of generality that µ1 > µ2. The case µ1 = µ2 is not interesting because the two filters remain equal and
the combination renders to a single filter.

The outputs of the two adaptive filters are combined according to

y(n) = λ (n)y1(n)+ [1−λ (n)]y2(n), (4)

where yi(n) = wH
i (n−1)x(n) and the mixing parameter λ can be any real number.

We define the a priori system error signal as difference between the output signal of the true system at
time n, given by yo(n) = wH

o x(n) = d(n)− v(n), and the output signal of our adaptive scheme y(n)

ea(n) = yo(n)−λ (n)y1(n)− (1−λ (n))y2(n). (5)

Let us now find λ (n) by minimizing the mean square of the a priori system error. The derivative of
E[|ea(n)|2] with respect to λ (n) reads

∂E[|ea(n)|2]
∂λ (n)

= 2E[Re{(yo(n)− y2(n))(y2(n)− y1(n))∗}+λ (n)|(y2(n)− y1(n))|2]. (6)

Setting the derivative to zero results in

λ (n) =
E[Re{(d(n)− y2(n))(y1(n)− y2(n))∗}]

E[|(y1(n)− y2(n))|2] , (7)

where we have replaced the true system output signal yo(n) by its observable noisy version d(n). Note,
however, that because we have made the standard assumption that the input signal x(n) and measurement
noise v(n) are independent random processes, this can be done without introducing any error into our
calculations.

The denominator of equation (7) comprises expectation of the squared difference of the two filter output
signals. This quantity can be very small or even zero, particularly at the beginning of adaptation if the two
step sizes are close to each other. Correspondingly λ computed directly from (7) may be large. To avoid
this from happening, we add a small regularization constant ε to the denominator of (7). The constant ε
should be selected small compared to E[xT (n)x(n)] but large enough to prevent division by zero in given
arithmetic.
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3. TRANSIENT ANALYSIS

In this section we are interested in finding expressions that characterize transient performance of the
combined algorithm, i.e., we intend to derive formulae that characterize the entire course of adaptation
of the algorithm. Before we can proceed we need, however, to introduce some notations. First, let us denote
the weight error vector of the ith filter as

w̃i(n) = wo−wi(n). (8)

Then the equivalent weight error vector of the combined adaptive filter will be

w̃(n) = λ w̃1(n)+(1−λ )w̃2(n). (9)

The mean square deviation (MSD) of the combined filter is given by

MSD = E[w̃H(n)w̃(n)] = λ 2E[w̃H
1 (n)w̃1(n)]

+2λ (1−λ )Re{E[w̃H
2 (n)w̃1(n)]}

+(1−λ )2E[w̃H
2 (n)w̃2(n)]. (10)

The a priori estimation error of an individual filter is defined as

ei,a(n) = w̃H
i (n−1)x(n). (11)

It follows from (5) that we can express the a priori error of the combination as

ea(n) = λ (n)e1,a(n)+(1−λ (n))e2,a(n) (12)

and because λ (n) is, according to (7), a ratio of mathematical expectations and, hence, deterministic, we
have for the excess mean square error (EMSE) of the combination

E[|ea(n)|2] = λ 2E[|e1,a(n)|2]
+2λ (1−λ )E[Re{e1,a(n)e∗2,a(n)}]
+(1−λ )2E[|e2,a(n)|2]. (13)

As ei,a(n) = w̃H
i (n−1)x(n), the expression of the EMSE becomes

E[|ea(n)|2] = λ 2E[w̃H
1 (n−1)xxHw̃1(n−1)]

+2λ (1−λ )E[Re{w̃H
1 (n−1)xxHw̃2(n−1)}]

+(1−λ )2E[w̃H
2 (n−1)xxHw̃2(n−1)]. (14)

In what follows we often drop the explicit time index n as we have done in (14), if it is not necessary to
avoid a confusion.

Noting that yi(n) = wH
i (n−1)x(n), we can rewrite the expression for λ (n) in (7) as

λ (n) =
E[w̃H

2 xxHw̃2]−E[Re{w̃H
2 xxHw̃1}]

E[w̃H
1 xxHw̃1]−2E[Re{w̃H

1 xxHw̃2}]+E[w̃H
2 xxHw̃2]

. (15)

We thus need to investigate the evolution of terms of the type EMSEk,l =
E[w̃H

k (n− 1)x(n)xH(n)w̃l(n− 1)] in order to reveal the time evolution of EMSE(n) and λ (n). To do so,
we concentrate first on the mean square deviation defined in (10).
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For a single NLMS filter we have after subtraction of (1) from wo and expressing ei(n) through the error
of the corresponding Wiener filter eo(n)

w̃i(n) =
(

I− µ
xHx

xxH
)

w̃i(n−1)− µ
xHx

xe∗o(n). (16)

At this point we make two approximations. First, we approximate the outer product of input signal
vectors by its correlation matrix xxH ≈ Rx. Second, we approximate the inner product of the input signal
vectors by N times of its power xHx≈ Nσ 2

x . With those approximations we have

w̃(n)≈
(

I− µ
Nσ2

x
Rx

)
w̃(n−1)− µ

Nσ2
x

xe∗o(n). (17)

This means, in fact, that we apply the small step size theory [2] even if the assumption of a small step size is
not really true for the fast adapting filter. In our simulation study we will see, however, that the assumption
works rather well in practice.

Let us now define the eigendecomposition of the correlation matrix as

QHRxQ = ΩΩ, (18)

where Q is a unitary matrix whose columns are the orthogonal eigenvectors of Rx and ΩΩ is a diagonal matrix
having eigenvalues associated with the corresponding eigenvectors on its main diagonal. We also define the
transformed weight error vector as

v(n) = QHw̃(n) (19)

and the transformed last term of equation (17) as

p(n) =
µ

Nσ 2
x

QHxe∗o(n). (20)

Then we can rewrite equation (17) after multiplying both sides by QH from the left as

v(n) =
(

I− µ
Nσ 2

x
ΩΩ

)
v(n−1)−p(n). (21)

We note that the mean of p is zero by the orthogonality theorem and its correlation matrix equals

E[ppH ] =
µ2

N2σ4
x

QHE[xe∗o(n)eo(n)xH ]Q. (22)

We now invoke the Gaussian moment factoring theorem to write

E[xe∗o(n)eo(n)xH ] = E[xe∗o(n)]E[eo(n)xH ]+E[xxH ]E[|eo|2]. (23)

The first term in the above is zero due to the principle of orthogonality and the second term equals RJmin.
Hence we are left with

E[ppH ] =
µ2

N2σ4
x

JminΩΩ, (24)

where Jmin = E[|eo|2] is the minimum mean square error produced by the corresponding Wiener filter. As
the matrices I and ΩΩ in (21) are diagonal, it follows that the mth element of vector v(n) is given by

vm(n) =
(

1− µ
Nσ2

x
ωm

)
vm(n−1)− pm(n)

=
(

1− µ
Nσ2

x
ωm

)n

vm(0)+
n−1

∑
i=0

(
1− µ

Nσ2
x

ωm

)n−1−i

pm(i), (25)
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where ωm is the mth eigenvalue of Rx and vm and pm are the mth components of the vectors v and p,
respectively.

We can now express the MSD and its individual components in (10) through the transformed weight
error vectors as

E[w̃H(n)w̃(n)] = E[vH(n)v(n)] =
N−1

∑
m=0

E[vm(n)v∗m(n)]. (26)

Let us concentrate on the mth component in the sum above corresponding to the cross term and denote it as
ϒm = E[vk,m(n)v∗l,m(n)]. The expressions for the component filters follow as special cases. Substituting (25)
into the expression of ϒm above, taking the mathematical expectation, and noting that the vector p is
independent of v(0) results in

ϒm = E
[(

1− µk

Nσ2
x

ωm

)n

vk(0)
(

1− µl

Nσ 2
x

ωm

)n

v∗l (0)
]

+ E

[
n−1

∑
i=0

n−1

∑
j=0

(
1− µk

Nσ2
x

ωm

)n−1−i (
1− µl

Nσ2
x

ωm

)n−1− j

pk,m(i)p∗l,m( j)

]
. (27)

We now note that most likely the two component filters are initialized to the same value

vk,m(0) = vl,m(0) = vm(0) (28)

and that

E
[
pk,m(i)p∗l,m( j)

]
=

{ µkµl
N2σ4

x
ωmJmin, i = j
0, otherwise

. (29)

We then have for the mth component of MSD

ϒm =
(

1− µk

Nσ2
x

ωm

)n (
1− µl

Nσ2
x

ωm

)n

|vm(0)|2

+
µkµl

N2σ4
x

ωmJmin

(
1− µk

Nσ 2
x

ωm

)n−1 (
1− µl

Nσ2
x

ωm

)n−1 n−1

∑
i=0

(
1− µk

Nσ2
x

ωm

)−i (
1− µl

Nσ 2
x

ωm

)−i

.

(30)

The sum over i above can be recognized as a geometric series with n terms. The first term is equal to 1

and the geometric ratio equals
(

1− µk
Nσ2

x
ωm

)−1 (
1− µl

Nσ2
x

ωm

)−1
. Hence we have

n−1

∑
i=0

(
1− µk

Nσ2
x

ωm

)−i (
1− µl

Nσ2
x

ωm

)−i

=

(
1− µk

Nσ2
x

ωm

)(
1− µl

Nσ2
x

ωm

)

µkµl
N2σ4

x
ω2

m− µk
Nσ2

x
ωm− µl

Nσ2
x

ωm

−

(
1− µk

Nσ2
x

ωm

)−n+1 (
1− µl

Nσ2
x

ωm

)−n+1

µkµl
N2σ4

x
ω2

m− µk
Nσ2

x
ωm− µl

Nσ2
x

ωm
. (31)

After substitution of the above into (30) and simplification we are left with

ϒm = E[vk,m(n)v∗l,m(n)]

=
(

1− µk

Nσ2
x

ωm

)n (
1− µl

Nσ2
x

ωm

)n

|vm(0)|2 +

Jmin

ω2
m− Nσ2

x ωm
µl

− Nσ2
x ωm
µk




− Jmin

ω2
m− Nσ2

x ωm
µl

− Nσ2
x ωm
µk

, (32)
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which is our result for a single entry to the MSD cross term vector. It is easy to see that for the terms
involving a single filter we get expressions that coincide with the one available in the literature [2].

Let us now focus on the cross term

EMSEk,l = E
[
w̃H

k (n−1)x(n)xH(n)w̃l(n−1)
]
, (33)

appearing in the EMSE equation (14). Due to the independence assumption we can rewrite this by using the
properties of the trace operator as

EMSEk,l = E
[
w̃H

k (n−1)Rxw̃l(n−1)
]

= tr
{

E
[
Rxw̃l(n−1)w̃H

k (n−1)
]}

= tr
{

RxE
[
w̃l(n−1)w̃H

k (n−1)
]}

. (34)

Let us now recall that for any of the filters w̃i(n) = Qvi(n) to write

EMSEk,l = tr
{

RxE
[
Qvl(n−1)vH

k (n−1)QH]}

= tr
{

E
[
vH

k (n−1)QHRxQvl(n−1)
]}

= tr
{

E
[
vH

k (n−1)ΩΩvl(n−1)
]}

=
N−1

∑
i=0

ωiE
[
v∗k,i(n−1)vl,i(n−1)

]
. (35)

The EMSE of the combined filter can now be computed as

EMSE =
N−1

∑
i=0

ωiE
[|λ (n)vk,i(n−1)+(1−λ (n)vl,i(n−1)|2] , (36)

where the components of type E[vk,i(n− 1)vl,i(n− 1)] are given by (32). To compute λ (n), we use (15),
substituting (35) for its individual components.

4. SIMULATION RESULTS

A simulation study was carried out with the aim of verifying the approximations made in Section 3. In
particular we are interested in how well the small step-size theory applies to our combination scheme of two
adaptive filters.

We have combined two 64 tap long adaptive filters. In order to obtain a practical algorithm, the
expectation operators in both the numerator and denominator of (7) have been replaced by exponential
averaging of the type

Pu(n) = (1− γ)Pu(n−1)+ γu2(n), (37)

where u(n) is the signal to be averaged, Pu(n) is the averaged quantity, and γ = 0.01. The averaged quantities
were then used in (7) to obtain λ . We have selected the sample echo path model number one from [24], to
be the unknown system to identify. The impulse response of the echo path is shown in Figure 2.

The curves in Figures 3–6 are averaged over 100 trials. The input signal x is formed from the Gaussian
white noise with unity variance by passing it through the filter with the transfer function

H(z) =
1

1−0.5z−1−0.1z−2 (38)
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Fig. 2. The true impulse response.

to get a coloured input signal. The measurement noise is Gaussian white noise, statistically independent of
x. The solid lines represent the simulation results and the dashed lines are the theoretical results. The theory
predicts the simulation results rather well and because of that in Figs 3–6 the theoretical curve overlaps with
the simulation result.

As seen from Figure 3, there is a a rapid convergence in the beginning, followed by a stabilization
period. When the slow adapting filter gets better than the fast one between sample times 15 000 and 20 000,
a second convergence occurs. One can observe a good resemblance of simulation and theoretical curves.

Figure 4 depicts the time evolution of the combination parameter λ in this simulation. At the beginning
of the test case the combination parameter is close to one. Correspondingly the output signal of the fast
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Fig. 3. Time-evolutions of EMSE with µ1 = 0.5, µ2 = 0.05, and σ2
v = 10−4.
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Fig. 4. Time-evolutions of λ with µ1 = 0.5, µ2 = 0.05, and σ2
v = 10−4.

filter is used as the output of the combination. After a while, when the slow filter catches up the fast one
and becomes better, λ changes towards zero and eventually becomes a small negative number. In this state
the slow but more accurate filter determines the combined output. Again, one can see that there is a clear
similarity between the lines.

The reason for λ becoming negative at the end of adaptation lies in that we have two adaptive filters
working in parallel on the same input signal and the criterion for selecting λ is minimization of the mean
square error of the output signal. At the end of adaptation some of the additive noise v(n) will be cancelled
out if λ is allowed to become negative to provide the smallest possible mean square error.

In Figure 5 we have made the difference between the step sizes small. One can see that the characteristic
horizontal part of the learning curve has almost disappeared. We have also increased the measurement noise
level. The simulation and theoretical curves show a good match.
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Fig. 5. EMSE with µ1 = 0.2, µ2 = 0.1, and σ2
v = 10−2.
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Fig. 6. EMSE with µ1 = 0.2, µ2 = 0.05, and σ2
v = 10−1.

In Figure 6 we have increased the measurement noise level even more. One can see that the theoretical
simulation results agree well.

5. CONCLUSIONS

We have investigated a combination of two NLMS adaptive filters that are simultaneously applied to the
same input signals. The mixing parameter λ was computed, using the output signals of the individual filters
and the desired signal. The transient behaviour of the algorithm was investigated, using the assumption of a
small step size, and the expressions for evolution of EMSE(n) and λ (n) were derived. Finally, it was shown
in the simulation study that the derived formulae fit the simulation results well.
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Väljundsignaalidel baseeruv adaptiivsete NLMS-filtrite kombinatsioon:
koonduvusanalüüs

Tõnu Trump

On uuritud kahe adaptiivse NLMS-filtri, mis adapteeruvad samadele sisendsignaalidele, kombinatsiooni.
Ühel filtril on suur ja teisel väike sammu pikkus. Filtrite väljundid kombineeritakse λ -parameetri abil, mille
leiame filtrite väljundsignaalidest. Selline kombinatsioon on uus viis saavutada üheaegselt adaptiivse algo-
ritmi kiire koonduvus ja väike väljakujunenud oleku viga. Artiklis on tuletatud valemid, mis võimaldavad
arvutada ruutkeskmise vea kogu filtri töö kestel. Teoreetilised tulemused on arvutikatsetega kontrollitud.


