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Abstract. We continue our studies on Riesz-type families of summability methods for functions and sequences, started in Proc.
Estonian Acad. Sci., 2008, 57, 70–80 and Math. Model. Anal., 2010, 15, 103–112. Strong summability methods defined on the basis
of a given Riesz-type family {Aα} are considered here. Inclusion theorems for these methods are proved. Our inclusion theorems
allow us to compare the summability fields and speeds of convergence. The strong summability methods are also compared with
ordinary summability methods Aα and with certain methods of statistical convergence. The proved theorems generalize different
results that have already been published and are applied, in particular, to Riesz methods, generalized integral Nörlund methods, and
Borel-type methods.
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1. INTRODUCTION AND PRELIMINARIES

Let x = x(u) be the functions defined for u≥ 0, bounded and Lebesgue-measurable on every finite interval
[0,u0]. Denote the set of all these functions by X .

If the limit limu→∞ x(u) = s exists, we say that x = x(u) is convergent to s. Suppose that A is a trans-
formation of functions x = x(u) (or, in particular, of sequences x = (xn)) into functions Ax = y = y(u) ∈ X .
If the limit limu→∞ y(u) = s exists, we say that x = x(u) is convergent to s with respect to the summability
method A (or x is summable to s by the method A) and write x(u)→ s(A). If the function y = y(u) is bounded,
we say that x is bounded with respect to the method A, and write x(u) = O(A). We denote by ωA the set of
all these functions x, where the transformation A can be applied. The summability method A is said to be
regular if for each x ∈ X

lim
u→∞

x(u) = s =⇒ lim
u→∞

y(u) = s.

The most common summability method for functions x is an integral method A defined by the transformation

y(u) =
∫ u

0
a(u,v)x(v)dv, (1.1)

where a(u,v) is a certain function of two variables (u ≥ 0, v ≥ 0) with a(u,v) = 0 for v ≥ u. We also say
that the integral method A is defined by the function a(u,v).
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A. Šeletski and A. Tali: Strong summability in a Riesz-type family 239

The notion of a statistically convergent function is also used in this paper. According to [9] we say that
x is statistically convergent to s and write x(u)→ s(st) if for any ε > 0

lim
u→∞

|Kε,u|
u

= 0,

where |Kε,u| is the Lebesgue measure of the set

Kε,u = {v ∈ [0,u] : |x(v)− s| ≥ ε}. (1.2)

Generalizing the given notion of statistical convergence, we come to the following definition.

Definition 1. Let A be a regular integral method defined by transformation (1.1), where a(u,v) is some
non-negative function. We say that x = x(u) is A-statistically convergent to s and write x(u)→ s(stA) if for
any ε > 0

lim
u→∞

∫

Kε,u

a(u,v)dv = 0,

where Kε ,u is the set defined by (1.2).

In particular, the notion of A-statistical convergence for the matrix case was first defined in [3] and later
generalized and discussed in different papers (see [4] and [8] for references).

For converging sequences x = (xn) we focus on certain semi-continuous summability methods A defined
by transformations

y(u) =
∞

∑
n=0

an(u)xn (u≥ 0),

where an(u) (n = 0,1,2, . . .) are some functions from X .
One of the basic notions in this paper is the notion of the speed of convergence (see [10] and [12] and,

in particular for sequences, [6] and [7]). Let λ = λ (u) be a positive function from X such that λ (u)→ ∞ as
u→ ∞. We say that a function x = x(u) is convergent to s with speed λ if the finite limit

lim
u→∞

λ (u) [x(u)− s]

exists. Note that the limit can be zero. If we have λ (u) [x(u)− s] = O(1) as u → ∞, then x is said to be
bounded with speed λ . We say that x is convergent or bounded with speed λ with respect to the summability
method A if Ax = y(u) is convergent or bounded with speed λ , respectively.

In our paper we study Riesz-type families of summability methods defined in [10] and [13].
Let {Aα} be a family of summability methods Aα , where1 α >

(−)α0 and which are defined by trans-
formations of functions x = x(u) ∈ ωAα ⊂ X into functions Aαx = yα = yα(u) ∈ X . Suppose that for any
β > γ >

(−)α0 we have the relation
ωAγ ⊂ ωAβ . (1.3)

Definition 2. A family {Aα} (α >
(−)α0) is said to be a Riesz-type family if for every β > γ >

(−)α0 relation
(1.3) holds and the methods Aγ and Aβ are connected by the relation

yβ (u) =
Mγ ,β

rβ (u)

∫ u

0
(u− v)β−γ−1 rγ(v)yγ(v)dv (u > 0) (1.4)

with
rβ (u) = Mγ,β

∫ u

0
(u− v)β−γ−1 rγ(v)dv (u > 0), (1.5)

1 The notation α >
(−) α0 means that we consider parameter values α > α0 or α ≥ α0 with some fixed number α0, depending on

the specific situation.
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where rγ = rγ(u) and rβ = rβ (u) are some positive functions from X and Mγ,β is a constant depending on γ
and β .

In other words, a Riesz-type family is a family where every two methods are connected through the
connection formula

Aβ = Cγ,β ◦Aγ (β > γ
>

(−)
α0),

where Cγ ,β is the integral method defined by the function

cγ,β (u,v) =
{

Mγ ,β (u− v)β−γ−1 rγ(v)/rβ (u) if 0≤ v < u,
0 if v≥ u .

(1.6)

Next we introduce some examples of Riesz-type families (see, e.g., [15]).

Example 1. Consider the generalized Nörlund methods Aα = (N,uα−1,q(u)), where α > 0 and q = q(u)
is a positive function from X . These methods are defined by the transformation of x into Aαx = yα = yα(u)
with

yα(u) =
1

rα(u)

∫ u

0
(u− v)α−1 q(v)x(v)dv (u > 0),

where rα = rα(u) =
∫ u

0 (u− v)α−1q(v)dv. These methods form a Riesz-type family because relations (1.4)
and (1.5) are satisfied here for any β > γ > 0 with

Mγ ,β =
Γ(β )

Γ(γ)Γ(β − γ)
, (1.7)

where Γ(·) is the Gamma-function. In particular, if q(u) = 1 (u≥ 0), we have rα(u) = uα/α and the methods
(N,uα−1,q(u)) turn into Riesz methods (R,α) (see [5]). The methods (R,α) form the Riesz-type family for
α ≥ 0 if we take y0(u) = x(u) and r0(u) = 1 for any u≥ 0.

Example 2. Let {Aα} be the family of generalized Nörlund methods (N, pα(u),q(u)) (α > α0), defined by
the transformation

yα(u) =
1

rα(u)

∫ u

0
pα(u− v)q(v)x(v)dv (u > 0)

with the help of positive functions p = p(u) ∈ X and q = q(u) ∈ X and the number α0 such that rα(u) =∫ u
0 pα(u−v)q(v)dv > 0, where pα(u) =

∫ u
0 (u−v)α−1 p(v)dv. Here (1.4), together with (1.5) and (1.7), hold

for any β > γ > α0. Hence {Aα} is a Riesz-type family.

Example 3. Consider the family {Aα} of Borel-type methods Aα = (B,α,qn). Let (qn) be a non-negative
sequence such that the power series ∑qn un has the radius of convergence R = ∞ and qn > 0 at least for one
n ∈ IN. Denote

rα(u) =
∞

∑
n=1

n!qn un+α−1

Γ(n+α)

and define the methods (B,α,qn) (α > −1/2) for converging sequences x = (xn) with the help of the
transformation

yα(u) =
1

rα(u)

∞

∑
n=1

n!qn un+α−1

Γ(n+α)
xn (u > 0).

The methods (B,α,qn) satisfy (1.4) and (1.5) with Mγ,β = 1/Γ(β − γ) (see [13]). Thus {Aα} is a Riesz-type
family. In particular, if qn = 1/n!, we get the Borel-type methods (B,α) = (B,α,1/n!) (see [1,2]) which
include the Borel method B = (B,1) (see [5]).

We need the following proposition (see [10] and [14]).
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Proposition 1. The methods Cγ,β defined by (1.6) and (1.5) are regular for all β > γ > α0. These mehods
are regular also for all β > γ = α0, provided that

lim
u→∞

∫ u

0
rα0(v)dv = ∞. (1.8)

In the present paper the authors continue their studies on Riesz-type families started in [14] and [15].
The main idea of the paper is to define the family of strong summability methods [Aα+1]k on the basis of
a given Riesz-type family {Aα} (α >

(−)α0) and to describe it with the help of different inclusion theorems.
These strong summability methods are compared with each other by summability fields, i.e., by sets of
functions x they converge, and by the speed of convergence. The strong summability methods are also
compared with methods Aα and Aα+1 and with certain methods of statistical convergence.

2. INCLUSION THEOREMS FOR STRONG SUMMABILITY METHODS [Aα+1]k

We start this section with the definition of strong summability methods for converging functions x, supposing
that {Aα} (α >

(−)α0) is a Riesz-type family and k = k(u) is a positive function from X .
Let us denote

σ k
α+1(u) =

1
rα+1(u)

∫ u

0
rα(v) |yα(v)− s|k(v) dv, (2.1)

where yα(u) = Aαx (x ∈ ωAα) and rα(u) and rα+1(u) are defined by the family {Aα}.
Definition 3. Let {Aα} (α >

(−)α0) be a Riesz-type family and k = k(u) be a positive function from X. We
say that a function x = x(u) is strongly convergent to s with respect to the method Aα+1 (in short, [Aα+1]k-
convergent) and write x(u)→ s [Aα+1]k , if σ k

α+1(u)→ 0 as u→ ∞.
We say that a function x = x(u) is strongly bounded with respect to the method Aα+1 (in short, [Aα+1]k-

bounded) and write x(u) = O [Aα+1]k if

1
rα+1(u)

∫ u

0
rα(v) |yα(v)|k(v) dv = O(1). (2.2)

Thus we have defined the methods [Aα+1]k (α >
(−)α0). In particular, if Aα = (N,uα−1,q(u)), Aα =

(N, pα(u),q(u)) or Aα = (B,α,qn), then rα(u) and rα+1(u) were defined in Examples 1, 2 or 3, respectively.

We begin proving some inclusion theorems.

Theorem 1. Let {Aα} (α >
(−)α0) be a Riesz-type family. Let k = k(u) and k′ = k′(u) be two functions from

X. Then the following statements are true for functions x = x(u) and numbers s and β > γ >
(−)α0:

(i) if x(u)→ s[Aγ+1]k, then x(u)→ s[Aγ+1]k′ and if x(u) = O[Aγ+1]k, then x(u) = O[Aγ+1]k′ , provided that
0 < k′(u)≤ k(u)≤Mk′(u), where M is some positive constant;

(ii) if x(u)→ s[Aγ+1]k, then x(u)→ s
(
Aγ+1

)
and if x(u) = O[Aγ+1]k, then x(u) = O

(
Aγ+1

)
, provided that

1≤ k(u)≤ supu k(u) = M < ∞;
(iii) if x(u)→ s[Aγ+1]k, then x(u)→ s[Aβ+1]k and if x(u) = O[Aγ+1]k, then x(u) = O[Aβ+1]k, provided that

k = k(u) is nonincreasing and k(u)≥ 1.

Proof. Take w.l.o.g. s = 0.
(i) The quantity σ k′

γ+1(u) can be written in the form

σ k′
γ+1(u) =

1
rγ+1(u)

∫ u

0
rγ(v)

∣∣yγ(v)
∣∣k′(v) dv =

1
rγ+1(u)

∫ u

0
rγ(v)

[∣∣yγ(v)
∣∣k(v)

] k′(v)
k(v) dv.
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Notice that

1≤ k(u)
k′(u)

≤M.

Denote

uγ(v) =

{ ∣∣yγ(v)
∣∣k(v) if

∣∣yγ(v)
∣∣≥ 1,

0 if
∣∣yγ(v)

∣∣ < 1

and

wγ(v) =

{ ∣∣yγ(v)
∣∣k(v) if

∣∣yγ(v)
∣∣ < 1,

0 if
∣∣yγ(v)

∣∣≥ 1 .

Thus we have the relations
∣∣yγ(v)

∣∣k(v) = uγ(v)+wγ(v) (v≥ 0),

∣∣yγ(v)
∣∣k′(v) =

[∣∣yγ(v)
∣∣k(v)

] k′(v)
k(v) =

[
uγ(v)

] k′(v)
k(v) +

[
wγ(v)

] k′(v)
k(v) ,

[
uγ(v)

] k′(v)
k(v) ≤ uγ(v)≤

∣∣yγ(v)
∣∣k(v)

,

[
wγ(v)

] k′(v)
k(v) ≥ wγ(v),

[
wγ(v)

] k′(v)
k(v) ≤ [

wγ(v)
] 1

M .

Using these relations, we get with the help of the Hölder inequality and (1.5)

σ k′
γ+1(u) =

1
rγ+1(u)

∫ u

0
rγ(v)

[∣∣yγ(v)
∣∣k(v)

] k′(v)
k(v) dv

=
1

rγ+1(u)

∫ u

0
rγ(v)

[
uγ(v)

] k′(v)
k(v) dv+

1
rγ+1(u)

∫ u

0
rγ(v)

[
wγ(v)

] k′(v)
k(v) dv

≤ 1
rγ+1(u)

∫ u

0
rγ(v)uγ(v)dv+

1
rγ+1(u)

∫ u

0
rγ(v)

[
wγ(v)

] 1
M dv

≤ 1
rγ+1(u)

∫ u

0
rγ(v)

∣∣yγ(v)
∣∣k(v) dv+

[
1

rγ+1(u)

∫ u

0
rγ(v)dv

]1− 1
M

×
[

1
rγ+1(u)

∫ u

0
rγ(v)wγ(v)dv

] 1
M

= O(1)
{

1
rγ+1(u)

∫ u

0
rγ(v)

∣∣yγ(v)
∣∣k(v) dv

+
[

1
rγ+1(u)

∫ u

0
rγ(v)

∣∣yγ(v)
∣∣k(v) dv

] 1
M
}

.

Thus we have got the relation

σ k′
γ+1(u) = O(1){σ k

γ+1(u)+ [σ k
γ+1(u)]

1
M }, (2.3)

which implies our statement (i).
(ii) As

∣∣yγ+1(u)
∣∣≤ Mγ,γ+1

rγ+1(u)

∫ u

0
rγ(v)

∣∣yγ(v)
∣∣dv, (2.4)
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using statement (i), we get

x(u)→ s[Aγ+1]k =⇒ x(u)→ s[Aγ+1]1 =⇒ x(u)→ s(Aγ+1).

The part of statement (ii) about boundednes follows from (2.4) in an analogous way.
(iii) According to (2.1) we have

σ k
β+1(u) =

1
rβ+1(u)

∫ u

0
rβ (v)

∣∣yβ (v)
∣∣k(v) dv.

Now we get with the help of (1.4) and the Hölder inequality

σ k
β+1(u) =

1
rβ+1(u)

∫ u

0
rβ (v)

∣∣∣∣
Mγ ,β

rβ (v)

∫ v

0
(v− t)β−γ−1rγ(t)yγ(t)dt

∣∣∣∣
k(v)

dv

= O(1)
1

rβ+1(u)

∫ u

0
rβ (v)

(
1

rβ (v)

∫ v

0
(v− t)β−γ−1rγ(t)

∣∣yγ(t)
∣∣k(v) dt

)

×
(

1
rβ (v)

∫ v

0
(v− t)β−γ−1rγ(t)dt

)k(v)−1

dv

= O(1)
1

rβ+1(u)

∫ u

0

(∫ v

0
(v− t)β−γ−1rγ(t)

∣∣yγ(t)
∣∣k(v) dt

)
dv

= O(1)
1

rβ+1(u)

∫ u

0

(∫ v

0
tβ−γ−1rγ(v− t)

∣∣yγ(v− t)
∣∣k(v) dt

)
dv

= O(1)
1

rβ+1(u)

∫ u

0
tβ−γ−1

(∫ u

t
rγ(v− t)

∣∣yγ(v− t)
∣∣k(v) dv

)
dt.

Thus we have shown that

σ k
β+1(u) = O(1)

1
rβ+1(u)

∫ u

0
tβ−γ−1

(∫ u−t

0
rγ(v)

∣∣yγ(v)
∣∣k(t+v) dv

)
dt. (2.5)

Denoting

uγ(v, t) =

{ ∣∣yγ(v)
∣∣k(t+v) if

∣∣yγ(v)
∣∣≥ 1,

0 if
∣∣yγ(v)

∣∣ < 1

and

wγ(v, t) =

{ ∣∣yγ(v)
∣∣k(t+v) if

∣∣yγ(v)
∣∣ < 1,

0 if
∣∣yγ(v)

∣∣≥ 1,

we get the relations ∣∣yγ(v)
∣∣k(t+v) = uγ(v, t)+wγ(v, t) (v≥ 0, t ≥ 0),

uγ(v, t)≤
∣∣yγ(v)

∣∣k(v)
, wγ(v, t)≤

∣∣yγ(v)
∣∣ .

Further we use also the notation

σ1
γ+1(u) =

1
rγ+1(u)

∫ u

0
rγ(v)

∣∣yγ(v)
∣∣ dv. (2.6)
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Developing (2.5) with the help of the last relations, we get

σ k
β+1(u) = O(1)

[
1

rβ+1(u)

∫ u

0
tβ−γ−1

(∫ u−t

0
rγ(v)uγ(v, t)dv

)
dt

+
1

rβ+1(u)

∫ u

0
tβ−γ−1

(∫ u−t

0
rγ(v)wγ(v, t)dv

)
dt

]

= O(1)
[

1
rβ+1(u)

∫ u

0
tβ−γ−1

(∫ u−t

0
rγ(v)

∣∣yγ(v)
∣∣k(v) dv

)
dt

+
1

rβ+1(u)

∫ u

0
tβ−γ−1

(∫ u−t

0
rγ(v)

∣∣yγ(v)
∣∣dv

)
dt

]

= O(1)
[

1
rβ+1(u)

∫ u

0
tβ−γ−1rγ+1(u− t)σ k

γ+1(u− t)dt

+
1

rβ+1(u)

∫ u

0
tβ−γ−1rγ+1(u− t)σ 1

γ+1(u− t)dt
]
.

So we have proved the relation

σ k
β+1(u) = O(1)

[
1

rβ+1(u)

∫ u

0
(u− t)β−γ−1rγ+1(t)σ k

γ+1(t)dt

+
1

rβ+1(u)

∫ u

0
(u− t)β−γ−1rγ+1(t)σ1

γ+1(t)dt
]
. (2.7)

It follows from (2.7) that if σ k
γ+1(u)→ 0, then σ k

β+1(u)→ 0 (as u→ ∞), because σ k
γ+1(u)→ 0 implies

σ 1
γ+1(u) → 0 by statement (i) and Cγ+1,β+1 is a regular method by Proposition 1. The part of state-

ment (iii) about boundedness follows from (2.7) analogously. ¤
Remark 1.

(i) If we weaken the restrictions on k and k′ allowing also the case k(u)
k′(u) → ∞, then statement (i) of

Theorem 1 is not true in general (see Remark 2 in [11]).
(ii) If 0 < k(u) < 1, then statement (ii) is not true in general (see Remark 4 in [11]).

(iii) In particular, if k(u)≡ r, then relation (2.5) takes the form

σ r
β+1(u) = O(1)

[
1

rβ+1(u)

∫ u

0
(u− v)β−γ−1 rγ+1(v)σ r

γ+1(v)dv
]

(2.8)

and completes the proof of statement (iii) of Theorem 1.

Theorem 2. Let {Aα} (α >
(−)α0) be a Riesz-type family. Then the following statements are true for functions

x = x(u) and numbers s and γ ≥ α0 :
(i) if x(u)→ s

(
Aγ

)
, then x(u)→ s[Aγ+1]k, provided that infu k(u) = m > 0, and provided that also condition

(1.8) holds if α0 is included;
(ii) if x(u) = O

(
Aγ

)
, then x(u) = O[Aγ+1]k, provided that supu k(u) = M < ∞.

Proof. Take w.l.o.g. s = 0.

(i) As k(u)≥m > 0 for any u≥ 0 and
∣∣yγ(u)

∣∣≤ 1 for sufficiently large u, we have
∣∣yγ(u)

∣∣k(u) ≤ ∣∣yγ(u)
∣∣m for

sufficiently large u and therefore
∣∣yγ(u)

∣∣k(u) → 0 if yγ(u) → 0. Thus σ k
γ+1(u) → 0 as yγ(u) → 0 (as

u→ ∞) due to (2.1) and regularity of Cγ,γ+1.

Statement (ii) is also true because yγ(u) = O(1) implies
∣∣yγ(u)

∣∣k(u) = O(1). ¤
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Theorem 3. Let {Aα} (α >
(−)α0) be a Riesz-type family. Suppose that 1≤ k(u)≤ supu k(u) = M < ∞. Then

the following statements are true for functions x = x(u) and numbers s and γ >
(−)α0:

(i) x(u)→ s[Aγ+1]k if and only if x(u)→ s(Aγ+1) and
∣∣yγ+1(u)− yγ(u)

∣∣k(u) → 0(Cγ,γ+1), provided that (1.8)
holds if α0 is included;

(ii) x(u) = O[Aγ+1]k if and only if x(u) = O(Aγ+1) and
∣∣yγ+1(u)− yγ(u)

∣∣k(u) = O(Cγ,γ+1), where the method
Cγ,γ+1 is defined by (1.6).

Proof. (i) Necessity. Denote2

δ k
γ+1(u)= 1

rγ+1(u)

∫ u

0
rγ(v)

∣∣yγ+1(v)− yγ(v)
∣∣k(v) dv. (2.9)

Using the Minkowski inequality and the inequality

|a+b|c ≤ |a|c + |b|c (c≤ 1) (2.10)

with c = k(u)/M, we get

[δ k
γ+1(u)]

1
M =

{
1

rγ+1(u)

∫ u

0
rγ(v)

(∣∣yγ+1(v)− s+ s− yγ(v)
∣∣ k(v)

M

)M

dv

} 1
M

≤
{

1
rγ+1(u)

∫ u

0
rγ(v)

(∣∣yγ+1(v)− s
∣∣ k(v)

M +
∣∣yγ(v)− s

∣∣ k(v)
M

)M

dv

} 1
M

≤
[∫ u

0

rγ(v)
rγ+1(u)

∣∣yγ+1(v)− s
∣∣k(v) dv

] 1
M

+
[∫ u

0

rγ(v)
rγ+1(u)

∣∣yγ(v)− s
∣∣k(v) dv

] 1
M

.

Thus we have proved the inequality

[δ k
γ+1(u)]

1
M ≤

[∫ u

0

rγ(v)
rγ+1(u)

∣∣yγ+1(v)− s
∣∣k(v) dv

] 1
M

+
[
σ k

γ+1(u)
] 1

M
. (2.11)

If x(u)→ s[Aγ+1]k, then x(u)→ s(Aγ+1) due to Theorem 1 (ii), and thus the right side of inequality (2.11)
tends to zero. Then also the left side of (2.11) tends to zero and therefore δ k

γ+1(u)→ 0 as u→ ∞.
(i) Sufficiency. Using the same technique as in the proof of necessity, we get the inequality

[
σ k

γ+1(u)
] 1

M ≤
[

1
rγ+1(u)

∫ u

0
rγ(v)

∣∣yγ+1(v)− s
∣∣k(v) dv

] 1
M

+[δ k
γ+1(u)]

1
M . (2.12)

If x(u)→ s(Aγ+1) and
∣∣yγ+1(u)− yγ(u)

∣∣k(u) → 0(Cγ ,γ+1), then it follows from (2.12) that x→ 0[Aγ+1]k.
Statement (ii) can be proved in an analogous way with the help of (2.11) and (2.12) if s = 0. ¤

Remark 2. In particular, if k(u) ≡ r, Theorems 1–3 are formulated with some hints at proofs in [13] as
Theorems 4–6. Theorems analogous to Theorems 1–3 for the matrix case are proved in [11] (as Theorems 4
and 5), where also references for partial cases can be found.

2 We keep δ k
γ+1(u) defined by (2.9) till the end of the paper.
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3. COMPARATIVE ESTIMATIONS FOR SPEEDS OF [Aα+1]k-CONVERGENCE

Let {Aα} (α >
(−)α0) be a Riesz-type family and k = k(u) be a positive function from X . Suppose that

λ = λ (u) is a positive function from X such that λ (u)→ ∞ as u→ ∞.

Definition 4. We say that a function x = x(u) is [Aα+1]k-convergent to s with speed λ if there exists the finite
limit

lim
u→∞

λ (u)σ k
α+1(u),

where σ k
α+1(u) is defined by (2.1).

In this paper mainly the limit
lim
u→∞

λ (u)σ k
α+1(u) = 0

is used, but also the relation
λ (u)σ k

α+1(u) = O(1)

is used for describing the speed of [Aα+1]k-convergence of x.

The following Theorems 4–6 help us to estimate the speed of [Aα+1]k-convergence.

Theorem 4. Let {Aα} (α >
(−)α0) be a Riesz-type family. Let there be given some positive function

λ = λ (u)→ ∞ from X . Then the following statements are true for any γ > α0:
(i) if [λ (u)]M σ k

γ+1(u) = o(1), then λ (u)σ k′
γ+1(u) = o(1), provided that k(u) and k′(u) satisfy the conditions

0 < k′(u)≤ k(u)≤Mk′(u);
(ii) if [λ (u)]M σ k

γ+1(u) = o(1), then λ (u)[yγ+1(u)− s] = o(1), provided that 1≤ k(u)≤ supu k(u) = M < ∞.

Proof. Take w.l.o.g. s = 0.
(i) By (2.3) we have the relation

λ (u)σ k′
γ+1(u) = O(1){λ (u)σ k

γ+1(u)}+O(1){[λ (u)]Mσ k
γ+1(u)} 1

M ,

which implies statement (i) immediately.

(ii) By (2.4) and (2.6) we have the inequality

λ (u)
∣∣yγ+1(u)

∣∣≤Mγ,γ+1λ (u)σ 1
γ+1(u).

Statement (i) and the last inequality complete the proof of (ii):

[λ (u)]M σ k
γ+1(u)→ 0 =⇒ λ (u)σ1

γ+1(u)→ 0 =⇒ λ (u)yγ+1(u)→ 0. ¤

Remark 3. Theorem 4 remains true if we replace o(1) by O(1) everywhere in it.

In papers [14] and [15] the speeds λγ and λβ of convergence x = x(u) with respect to methods Aγ and
Aβ (β > γ) are compared in a Riesz-type family (see [14], Theorem 1 and [15], Theorem 2). Speed λγ = λ
is supposed to be a given speed and λβ = λβ (u) is defined by the relations

λβ+1(u) =
rβ+1(u)
bβ+1(u)

, bβ+1(u) = Mγ,β

∫ u

0
(u− v)β−γ−1bγ+1(v)dv, bγ+1(u) =

rγ+1(u)
λ (u)

. (3.1)

Further we see that these speeds can be compared also for strong summability methods.



A. Šeletski and A. Tali: Strong summability in a Riesz-type family 247

Theorem 5. Let {Aα} (α >
(−)α0) be a Riesz-type family. Let there be given some function λ = λ (u) ∈ X

satisfying the condition 0 < infu λ (u) ≤ λ (u) → ∞. Suppose that k(u) ≡ r ≥ 1. Then we have for any
β > γ >

(−)α0 the implication

λ (u)σ k
γ+1(u) = o(1) =⇒ λβ+1(u)σ k

β+1(u) = o(1) (3.2)

(as u→ ∞), provided that

lim
u→∞

∫ u

0
bγ+1(v)dv = ∞. (3.3)

Proof. It follows from (2.8) that

λβ+1(u)σ r
β+1(u) = O(1)

[λβ+1(u)
rβ+1(u)

∫ u

0
(u− t)β−γ−1 rγ+1(t)

λ (t)
λ (t)σ r

γ+1(t)dt
]
.

Using formulas (3.1), we get

λβ+1(u)σ r
β+1(u) = O(1)

[
1

bβ+1(u)

∫ u

0
(u− t)β−γ−1 bγ+1(t)λ (t)σ r

γ+1(t)dt
]
. (3.4)

The integral method Fγ ,β , defined with the help of the function

fγ,β (u,v) =

{
Mγ,β (u−v)β−γ−1bγ+1(v)

bβ+1(u) if 0≤ v < u,

0 if v≥ u,
(3.5)

is regular by Proposition 1. That is why implication (3.2) follows from (3.4). ¤
Remark 4. Theorem 5 remains true if we replace o(1) by O(1) in (3.2). Comparative estimates for speeds
λ and λβ+1 defined through (3.1) can be found in [14] (Propositions 2, 3 and Examples 5–9). Note that
λβ+1(u)→ ∞ if u→ ∞ due to (3.3) (see Remark 2 in [15]).

Theorem 6. Let {Aα} (α >
(−)α0) be a Riesz-type family and 0 < λ (u) ↑ ∞. Let for each γ >

(−)α0 the function
λγ+1 = λγ+1(u) be defined with the help of the relations

λγ+1(u) =
rγ+1(u)
bγ+1(u)

with bγ+1(u) = Mγ ,γ+1

∫ u

0
bγ(v)dv and bγ(u) =

rγ(u)

[λ (u)]k(u) , (3.6)

where (3.3) is satisfied with γ instead of γ + 1. Then the following statements are true for any γ >
(−)α0 as

u→ ∞:
(i) if λ (u)[yγ(u)− s] = o(1), then λγ+1(u)σ k

γ+1(u) = o(1), provided that infu k(u) = m > 0;
(ii) if [λ (u)]M σ k

γ+1(u) = o(1), then λγ+1(u)δ k
γ+1(u) = o(1), provided that 1≤ k(u)≤ supu k(u) = M < ∞;

(iii) if λγ+1(u)δ k
γ+1(u) = o(1) and λ (u)

[
yγ+1(u)− s

]
= o(1), then λγ+1(u)σ k

γ+1(u) = o(1), provided that
1≤ k(u)≤ supu k(u) = M < ∞.

Proof.
(i) By (2.1) and (3.6) we have

λγ+1(u)σ k
γ+1(u) =

λγ+1(u)
rγ+1(u)

∫ u

0

rγ(v)

[λ (v)]k(v)
∣∣λ (v)

[
yγ(v)− s

]∣∣k(v) dv

=
1

bγ+1(u)

∫ u

0
bγ(v)

∣∣λ (v)
[
yγ(v)− s

]∣∣k(v) dv.
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Statement (i) follows from the last equality, because the integral method Fγ,γ+1 defined by (3.5) is regular.

(ii) We realize that λ (u)≥ 1 and therefore λγ+1(u)≤ [λ (u)]M for sufficiently large u. As δ k
γ+1(u) is defined

by (2.9), we get from (2.11) with the help of (3.6) for sufficiently large u:

[
λγ+1(u)δ k

γ+1(u)
] 1

M ≤
[

λγ+1(u)
rγ+1(u)

∫ u

0

rγ(v)

[λ (v)]k(v)
∣∣λ (v)

[
yγ+1(v)− s

]∣∣k(v) dv

] 1
M

+
[
λγ+1(u)σ k

γ+1(u)
] 1

M

≤
{

1
bγ+1(u)

∫ u

0
bγ(v)

∣∣λ (v)
[
yγ+1(v)− s

]∣∣k(v) dv
} 1

M

+
{
[λ (u)]M σ k

γ+1(u)
} 1

M
.

Statement (ii) follows now immediately from the last inequality, because the method Fγ ,γ+1 defined by

(3.5) is regular and [λ (u)]M σ k
γ+1(u)→ 0 implies

∣∣λ (u)
[
yγ+1(u)− s

]∣∣k(u) → 0 by Theorem 4 (ii).

(iii) Starting from (2.12), we prove the inequalities which imply (iii) immediately:

[
λγ+1(u)σ k

γ+1(u)
] 1

M ≤
[

λγ+1(u)
rγ+1(u)

∫ u

0

rγ(v)

[λ (v)]k(v)
∣∣λ (v)

[
yγ+1(v)− s

]∣∣k(v) dv

] 1
M

+
[
λγ+1(u)δ k

γ+1(u)
] 1

M

≤
[

1
bγ+1(u)

∫ u

0
bγ(v)

∣∣λ (v)
[
yγ+1(v)− s

]∣∣k(v) dv
] 1

M

+
[
λγ+1(u)δ k

γ+1(u)
] 1

M
. ¤

Remark 5. Theorem 6 remains true if we replace o(1) by O(1) everywhere in it.

4. COMPARISON OF [Aα+1]k-CONVERGENCE WITH STATISTICAL CONVERGENCE

Here we compare [Aα+1]k-convergence (α >
(−)α0) of x = x(u) with its A-statistical convergence, where the

method A = Cα,α+1 is defined by (1.6).

Theorem 7. Let {Aα} (α >
(−)α0) be a Riesz-type family satisfying (1.8) if α0 is included. Suppose that

supu k(u) = M < ∞. Then the following statements are true for functions x = x(u) and numbers s and
γ >

(−)α0:
(i) if x(u)→ s[Aγ+1]k, then Aγx→ s(stCγ,γ+1);

(ii) if x(u) = O(Aγ) and Aγx→ s(stCγ,γ+1), then x(u)→ s[Aγ+1]k, provided that infu k(u) = m > 0.

Proof. Choose an arbitrary ε > 0. According to (1.2) we denote

Kε,u = {v ∈ [0,u] : |yγ(v)− s| ≥ ε}.
(i) We get for σ k

γ+1(u) defined by (2.1) the inequalities

σ k
γ+1(u)≥

∫

Kε,u

rγ(v)
rγ+1(u)

∣∣yγ(v)− s
∣∣k(v) dv≥ h(ε)

∫

Kε,u

rγ(v)
rγ+1(u)

dv,
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where h(ε) = min{1,εM}. Therefore, if σ k
γ+1(u)→ 0 (as u→ ∞), then also the integral in the right side

of the last inequalities tends to zero, i.e., yγ(u)→ s(stCγ,γ+1). That proves (i).
(ii) Denoting K ∗

ε,u = {v ∈ [0,u] : |yγ(v)− s|< ε}, we get

σ k
γ+1(u) =

∫

Kε,u

rγ(v)
rγ+1(u)

∣∣yγ(v)− s
∣∣k(v) dv+

∫

K ∗
ε,u

rγ(v)
rγ+1(u)

∣∣yγ(v)− s
∣∣k(v) dv

≤ (L+ |s|)M
∫

Kε,u

rγ(v)
rγ+1(u)

dv+H(ε)
∫ u

0

rγ(v)
rγ+1(u)

dv,

where |yγ(u)| ≤ L and H(ε) = max{εm,εM}. If u→ ∞, then

lim
u→∞

σ k
γ+1(u)≤ (L+ |s|)M lim

u→∞

∫

Kε,u

rγ(v)
rγ+1(u)

dv+H(ε)/Mγ ,γ+1,

where Mγ,γ+1 is defined in Definition 2. If Aγx→ s(stCγ,γ+1), i.e., if the limit in the right side of the last
inequality is zero, then

lim
u→∞

σ k
γ+1(u)≤ H(ε)/Mγ,γ+1.

As ε > 0 is arbitrarily chosen, the last inequality implies that σ k
γ+1(u) = o(1) as u→ ∞. ¤

In particular, if we consider the family of Riesz methods Aα = (R,α) (α ≥ 0) and k(u) ≡ r, then
Theorem 7 gives for γ = 0 Theorem 2 from [3].

In order to see how statistical convergence is related to ordinary convergence in statements (i) and (ii) of
Theorem 7, we formulate the proposition which can be proved in the same way as Theorem 7 (take k(u)≡ 1
in its proof).

Proposition 2. Let {Aα} (α >
(−)α0) be a Riesz-type family satisfying (1.8) if α0 is included. Then the

following statements are true for functions x = x(u) and numbers s and γ >
(−)α0:

(i) if x(u) → s(Aγ), then Aγx→ s(stCγ,γ+1);
(ii) if x(u) = O(Aγ) and Aγx→ s(stCγ ,γ+1), then x(u) → s(Aγ+1).

5. CONCLUSIONS

In this paper a Riesz-type family of summability methods Aα (α >
(−)α0) is considered (see Definition 2).

The strong summability methods [Aα+1]k are defined (see Definition 3) and described with the help of
inclusion theorems. These theorems give the conditions for comparing the methods [Aα+1]k with each
other and with methods Aα (for different values of α) by summability fields (see Theorems 1–3) and by
speed of convergence (see Theorems 4–6). The methods [Aα+1]k are compared also with certain methods of
statistical convergence (see Theorem 7). Theorems 1–3 generalize the theorems known earlier, in particular,
for the case k = k(u) ≡ r (see [13]), showing that the methods [Aα+1]k defined here are more flexible. In
the authors’ view the notion of methods [Aα+1]k can be further generalized with the help of a modulus
function f . A convexity theorem can also be proved for these methods.
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1969, 18, 137–146 (in Russian).
7. Kangro, G. Summability factors for the series λ -bounded by the methods of Riesz and Cesàro. Tartu Ülik. Toimetised, 1971,
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Tugeva summeeruvuse menetlused Rieszi tüüpi peres

Anna Šeletski ja Anne Tali

Autorid jätkavad summeerimismenetluste Rieszi tüüpi perede {Aα} (α >
(−)α0) uurimist (vt [14] ja [15]).

On vaadeldud menetluste Aα+1 jaoks defineeritud tugeva summeeruvuse menetlusi [Aα+1]k. On tõestatud
sisalduvusteoreemid, mis lubavad vaadeldavaid tugeva summeeruvuse menetlusi võrrelda (parameetri α
erinevate väärtuste korral) omavahel ja menetlustega perest {Aα} nii summeerimisväljade kui -kiiruste järgi.
Tugeva summeeruvuse menetlusi on võrreldud ka teatavate statistilise koonduvuse menetlustega.


