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Abstract. Two partially ordered monoids S and T are called Morita equivalent if the categories of right S-posets and right T-posets
are Pos-equivalent as categories enriched over the category Pos of posets. We give a description of Pos-prodense biposets and
prove Morita theorems I, II, and III for partially ordered monoids.
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1. INTRODUCTION

At the beginning of the 1970s, Knauer [5] and Banaschewski [2] proved the first fundamental results about
Morita equivalence of monoids, establishing a theory parallel to the classical theory of Morita equivalent
rings (see [1] for an overview about that). An overview of Morita theory of monoids can be found in [4]. The
aim of this paper is to develop a theory of Morita equivalent partially ordered monoids (shortly pomonoids).
In particular, we prove the analogues of theorems, which (at least in the ring case, see [7]) are usually
called Morita I, Morita II, and Morita III. In Morita I we show that the endomorphism pomonoid S of a
cyclic projective generator over a pomonoid 7 is Morita equivalent to 7. In Morita I we prove that the
functors that induce a Morita equivalence of two pomonoids are (up to natural isomorphism) the tensor
multiplication functors. Morita III gives a connection between isomorphism classes of equivalence functors
and isomorphism classes of biposets with certain properties.

In this paper, S and 7" will stand for pomonoids. A poset (A, <) together with a mapping A x § —
A, (a,s) — a-s, is called a right S-poset (and the notation Ag is used) if (1) a-ss’' = (a-s) 5, 2) a-1 =a,
B)a<bimpliesa-s <b-s,and (4) s < s impliesa-s <a-s, forall a,b € A, 5,5 € S. Left S-posets can
be defined analogously. A left T-poset and right S-poset A is called a (7', S)-biposet (and denoted 7Ag) if
(t-a)-s=t-(a-s)forallac A, r €T and s € S. By Posg (sPos, 7Posg) we denote the category of right
S-posets (resp. left S-posets, (7, S)-biposets), where the morphisms are order and monoid action preserving
mappings. These categories are enriched over the category Pos of posets (with order preserving mappings as
morphisms), that is, the morphism sets are posets with respect to pointwise order. A Pos-functor between
such categories is a functor that preserves the order of morphisms.

Recall that epimorphisms in Posg are surjective morphisms, monomorphisms are injective morphisms,
and regular monomorphisms are order embeddings (see Theorem 7 of [3]). It is clear that every coretraction
(that is, a left invertible morphism) in Posg is a regular monomorphism.

For a fixed element a € Ag, the mapping [, : S — A, s+ a-s, is a morphism in Posg. For fixed elements
s€S,t€T,and sAr € sPosr, the mappings p; : A — A, ara-t,and A;: A — A, a+— s-a, are morphisms
in gPos and Posr, respectively.
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Definition 1. Pomonoids S and T are called Morita equivalent if the categories Poss and Posy are Pos-
equivalent.

The following lemma is easy to verify.
Lemma 1. For every sAr € sPosy there is an isomorphism S QA = A in gPosy, natural in A.

An object Ay in the category Posg is a generator if the functor Posg(A, —) : Poss — Pos is faithful.
The following results are proved in [6].

Theorem 1. The following assertions are equivalent for a right S-poset As:
1. Ag is a generator.

2. There exists an epimorphism T : Ag — Ss.

3. Sg is a retract of Ag.

Proposition 1. Cyclic projectives in Posg are precisely retracts of Ss.

Proposition 2. An S-poset Ag is a cyclic projective generator in Posg if and only if Ag = eSs for an
idempotent e € S withe 7 1.

For every Ay € Posy we consider the set End(A7) = Posy(A,A) as a pomonoid with respect to
composition and pointwise order. For every sA € sPos we consider the set End(sA) = sPos(A,A) as a
pomonoid with multiplication feg:=go f, f,g € End(sA), and pointwise order.

Proposition 3. For every sAr € sPosy, the mappings
A:S—End(Ar), s A,
p:T — End(sA), t— py,
are pomonoid homomorphisms.

Definition 2. We call a biposet sAr  faithfully balanced if the pomonoid homomorphisms A : S — End(Ar)
and p : T — End(sA) are isomorphisms.

Proposition 4. Let sAr € sPosr be a faithfully balanced biposet. Then At is a generator if and only if sA is
a cyclic projective.

Lemma 2. Let A7 € sPosy. If At is a cyclic projective generator and A : S — End(Ar) is an isomorphism
then sAr is faithfully balanced.

2. Pos-EQUIVALENCE FUNCTORS

In this section we derive Morita II from a general theorem of [10] about Morita equivalence of enriched
categories. Theorem 2 below will use the structures defined in the following lemma.

Lemma 3.
1. (a) For every sAt € sPosr and Cr € Posr, the set Posr(A,C) can be considered as an object of Posg
with the action defined by

(f-s)(a):=f(s-a). (1)
In particular, the set Posy(A,T) can be considered as an object of 7Posg with the actions defined
by (1) and

(t-f)(a):=1f(a). 2)

(b) For every sAr € sPosy the assignment C — Posy (A, C) defines a covariant Pos-functor Posr (A, —) :
Posr — Posg.

(¢c) The mapping Posy (T, T) — T, f — f(1), where the left and right T-action on Posy (T, T) are defined
by (1) and (2), is an isomorphism in tPosy.
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2. (a) For every 1Bs € 7Posg and 1C € 7Pos, the set 7Pos(B,C) can be considered as an object of sPos
with the S-action defined by

(s-)):==f(b-s).
(b) For every 1Bs € 7Posg the assignment C — 1rPos(B,C) defines a covariant Pos-functor tPos(B, —) :
rPos — gPos.

In the notation of [10] (Def. 2.6), Posy (A, —) : Posy — Posg is the functor A,

Definition 3. An (S,T)-biposet sPr is called Pos-prodense (see Theorem 2.8 of [10]) if the functor
Posy (P, —) : Posy — Posg is a Pos-equivalence.

For the details about tensor products of S-posets we refer to [12]. As in [10], by a Pos-adjoint we mean a
Pos-functor that has a left adjoint functor which is also a Pos-functor. A Pos-cocontinuous functor is a Pos-
functor that preserves all small Pos-colimits. Theorem 3.11 of [10], specified for pomonoids (one-object
Pos-categories), gives the following.

Theorem 2. Let S, T be pomonoids.
(a) If F : Poss — Posy is a Pos-adjoint functor, then there exists a biposet Qs such that F = Posg(Q, —).
(b) If F : Posg — Posy is a Pos-cocontinuous functor, then there exists a biposet sPr such that F = — Qg P.
(c) If F : Posg — Posy is Pos-adjoint, Pos-cocontinuous, and Pos-fully faithful, then s(P ®7 Q)s = sSs,
where sPr,1Qs are as in (a) and (b).

(d) Let F : Posg — Posy be a Pos-equivalence and let sPr, Qs be as in (a) and (b).

(i) The functor — @71 Q : Posy — Posg is a Pos-equivalence inverse of — &g P and Posg(Q,—).

Furthermore,

7(Q®sP)r = rTr, sPr=Poss(Q,S), Qs = Posr(P,T).

(ii) The functor Q ®g — : sPos — 7Pos is a Pos-equivalence with inverses P @1 — and 7Pos(Q, —).
(e) If a biposet sPr is Pos-prodense, then the functor sPos(P,—) : sPos — rPos is a Pos-equivalence.

This gives us a necessary and sufficient condition for Morita equivalence of two pomonoids.
Corollary 1. Pomonoids S and T are Morita equivalent if and only if there exists a Pos-prodense biposet sPr.

Proof. Necessity. Let G : Posy — Posg be a Pos-equivalence functor. By Theorem 2(a), there exists a biposet
sPr such that G 22 Posy (P, —), hence also Posy (P, —) is a Pos-equivalence and gPr is Pos-prodense.
Sufficiency is clear. Il

Let us give some more conditions for Morita equivalence of two pomonoids. By CPGg we denote the
full subcategory of Posg generated by all cyclic projective generators. We say that a posemigroup S is an
enlargement of a posemigroup T (cf. [8]) if T is isomorphic to a subposemigroup S’ of S such that S = SS'S
and §' = §'SS'.

Theorem 3. The following assertions are equivalent for pomonoids S and T .

1. S and T are Morita equivalent.

2. The categories CPGg and CPGr are Pos-equivalent.

3. There exists Qs € CPGg such that T = End(Qs) as pomonoids.

4. There exists an idempotent e € S such that e 7 1 and T = eSe as pomonoids.
5. S is an enlargement of T .

Proof. 1. = 2. It is not difficult to see that Pos-equivalence functors between Posg and Posy take cyclic
projective generators to cyclic projective generators. Hence they induce a Pos-equivalence between CPGg
and CPGy.

F
2. = 3. Suppose that CPGg —= CPGy are mutually inverse Pos-equivalence functors and denote
G

Qs := G(T) € CPGs. Then T = End(77) = End(Qy) as pomonoids.



224 Proceedings of the Estonian Academy of Sciences, 2011, 60, 4, 221-237

3. = 4. Since Qs is a cyclic projective generator, by Proposition 2 there exists an idempotent e € S such
thate_#1 and Q = eS in Posg. Hence

T = End(Qs) = End(eSs) = eSe

as pomonoids, where an isomorphism ¢ : End(eSs) = Posg(eS,eS) — eSe is defined by

(cf. Proposition 1.5.6 of [4]).

4.=5. Let T = eSe, where e € S is an idempotent and kel = 1, k,I € S. The equality eSe = (eSe)S(eSe)
is obvious. The equality S = S(eSe)S holds because s = kelskel for every s € S. Hence S is an enlargement
of T.

5. = 4. Suppose that S’ is a subposemigroup of S such that § = SS'S and S’ = §'SS’, and there is an
isomorphism ¢ : T — S of posemigroups. Then e = ¢(1) is the identity element for §’. Consequently,
S = eS’'e C eSe, but also eSe C §'SS’ = §'. Thus §' = eSe and ¢ : T — eSe is a pomonoid isomorphism. In
addition, 1 = s15'sy = s15’es, in S for some 51,5, €8, 5 € 5.

4. = 1. Let e € S be an idempotent such thate_# 1 and T = eSe. It suffices to prove that Posg and Pos,s,
are Pos-equivalent categories. If Ay € Posg then the set Ae := {a-e | a € A} can be considered as a right
eSe-poset with the action (a- e, ese) — a - ese. We define a Pos-functor F : Posg — Pos,g, by the assignment

AS P Aees@

BS P Beese

where g:a-e+ g(a-e) = g(a)-e € Be. Similarly to the unordered case (see Proposition 5.3.12 of [4]), one
can show that F' is a Pos-equivalence functor. U

Remark 1. One can see that pomonoids S and T are Morita equivalent if and only if gPos and rPos are
Pos-equivalent categories by noting that cyclic projective generators in sPos are of the form Se where e_#1,
and using a proof that is similar to the proof of Theorem 3.

Also, S is an enlargement of 7 if and only if S and 7T are enlargements of each other if and only if S and
T have a joint enlargement. This way Theorem 3 can be compared to Theorem 1.1 of [9].

Theorem 3 shows that being Morita equivalent is in the case of pomonoids very close to being
isomorphic. As in the monoid case (see [4], Corollary 5.3.14, or [2], corollary to Proposition 4), for several
large classes of pomonoids these notions coincide.

Corollary 2. Morita equivalence of the pomonoids S and T implies that S and T are isomorphic pomonoids
whenever 1 is the only idempotent in its ¢ -class. In particular, this is true in either of the following cases:
1. S has central idempotents;

2. every right invertible element of S is left invertible or vice versa;

3. all elements of infinite order in S are powers of one element;

4. idempotents of S satisfy the ascending chain condition;

5. S satisfies the descending chain condition for principal right (or left) ideals.

A list of non-isomorphic Morita equivalent monoids (which can be regarded as trivially ordered
pomonoids) is given in [4]. We give here an example of non-isomorphic Morita equivalent pomonoids
with non-trivial order. This will be a modification of Example 7.1 from [5].

Example 1. Consider the real interval [0, 1] and the monoid

S"={f:[0,x] —[0,1] | x € [0,1], f is strictly increasing and continuous} U {0 : ® — [0,1]}
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with the multiplication

gf:{acdomf|f(a) edomg} —[0,1], ar g(f(a)),

and order relation
f<h<=dom f CdomhA (Va € dom f)(f(a) > h(a)).

Note that if dom f = [0,x] and dom g = [0,y], then

[0,max{a € [0,x] | f(a) <y}], if f(0)<y,

dom (gf) = { 0. if £(0) >y,

so, indeed, gf € S'.

Let us check that S’ is a pomonoid. Suppose f,g,h € S’ and f < h. To prove that gf < gh, we first
have to show that dom (gf) C dom (gh). If a € dom (gf), then a € dom f C dom & and f(a) € dom g.
Therefore h(a) < f(a) € dom g. Since dom g is a down-set in the poset [0, 1], also i(a) € dom g, and hence
a € dom (gh). Thus dom (gf) C dom (gh). For every a € dom f we have f(a) > h(a). Since g preserves
order and dom (gf) C dom f, we also have (gf)(a) > (gh)(a) for every a € dom (gf). Consequently,

8f < gh.
To verify the inequality fg < hg we notice that the inclusion dom (fg) C dom (hg) follows from the
inclusion dom f C dom A. If a € dom (fg) = {b € dom g | g(b) € dom f}, then f(g(a)) > h(g(a)). Hence

fe< hg.
For every x € [0, 1] let iy : [0,x] — [0, 1], a — a, and consider also the mappings
k: [0,5] —10,1], aw 2a,
I: [0,1]=[0,1], aw~§.

Note that k < [ and i, < iy if and only if x < y. Let S be the subpomonoid of S’ generated by the set

{k,l}U{ix\xe [oﬂ U {31]}

It is easy to see that i 3 is an idempotent in S and ki 3 [ =iy, where i = 1jg 1 1s the identity element of S. Thus
S is Morita equivalent to i 3 Si 3

We claim that S and i3 Si; are not isomorphic pomonoids. It can be seen that the idempotents of S are

i 1
ix, where x € [O, %] U [%, 1]. So the idempotents of S that are different from the identity element i; form

a chain that contains no supremum. But the idempotents of i 3 Si 3 are iy where x € [O, %] U {%} Thus the

chain of non-identity idempotents of i3.Si; has the supremum i:. Hence S and i3 .Si; cannot be isomorphic
i 1 2 i 1

pomonoids, because a pomonoid isomorphism induces an isomorphism between the posets of idempotents.

For the next theorem we shall need the following lemma.

Lemma 4. Let sPr,sP; € sPosr. The functors — ®s P,— @g P : Poss — Posy are naturally isomorphic if
and only if P = P’ in sPosr.

Proof. Necessity. Suppose that  : — ®g P — — ®g P’ is a natural isomorphism. Then ag: SQP — S®@ P’
is an isomorphism in Posy. Due to Lemma 1, we only need to check that o is a morphism of left S-posets.
To this end, take any 5,5’ € S and p € P. Since Iy : S — S, 7 s'z, is a morphism in Posg and « is a natural

transformation, the square
s

SQP SQP
l.€,®1P [x/®1P,
SQP S®P

Qs
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commutes in Posy. Note that (Iy @ 1p)(s" @ p') =s's"@p =5 - ("@p') forall s € S and p’ € P, so
ly @1p = Ay, where Ay : SQ P — S® P, x — s'x. Hence

as(s' - (s@p)) = as(s's®@p)=(as(ly @1p))(s®p)
= ((ly@1p)as)(s@p) =2As(as(s®p)) =5 as(s@ p).

Sufficiency. Let @ : P — P’ be an isomorphism in sPosy. If Ag € Posg, then the functor A ®g — : sPosy —
Posr takes ¢ to an isomorphism 1, ® @ : A®Q P — A® P’ in Posy. If f: A — B is any morphism in Posg,
then obviously the square

1
AQP—22% _AgP

felp felp

- /
B®P 50 B®P

commutes and hence (14 ® Q)scposy : — P — — @ P’ is a natural isomorphism. O

Now we can prove a theorem that corresponds to Morita II in the case of pomonoids.

F
Theorem 4 (Morita I). Let S,T be pomonoids and let Poss == Posy be mutually inverse Pos-equivalence
G

functors. Then P := F(S) € sPosr, Q := G(T) € rPoss and

F~—QsP, G=-®rQ0.

F
Proof. If Poss ——=Posr are mutually inverse Pos-equivalence functors, then F(S) can be considered as an
G

object of gPosy with the left S-action defined by
s-b:=F(l)(b)

for every b € F(S). Indeed, it is known (see Lemma 5.3.1 of [4]) that such F(S) will be an (S, T)-biact.
Suppose that s < z, 5,z € S. Then Iy < I, hence F(l;) < F(l;) and s-b = F(l)(b) < F(l;)(b) = z- b for every
beF(S).Ifb<c,b,ceF(S),ands e S, thens-b=F(l;)(b) < F(l;)(c) = s-c because F(l;) is a morphism
in Posr. Hence F(S) € sPosr.

By Theorem 2(b), there exist a biposet sP} and a natural isomorphism @ : F — — ®g P’. As in the proof
of Lemma 4, [y ® 1p = Ay, and so, by naturality,

as(s'-b) = oas(F(ly) (b)) = (asF (Iy)) (D) = ((Iy @ 1p)as) (b) = Ay (as(b))
= s -os(b)

for every s’ € S, b € F(S). This means that o : F(S) — S® P’ is a morphism in sPos and hence an
isomorphism in gPosr. By Lemma 1, sPr = sF(S)r = s(S® P')r = P} in sPosy, and by Lemma 4,
F~—®¢P = —®gP. Similarly, G =~ — @7 Q. O

3. Pos-PRODENCE BIPOSETS

Here we give a description of Pos-prodense objects of gPosr, which, as we have seen in the previous section,
play an important role in Morita theory. First we prove some technical results.
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Proposition 5. If sPr € sPosy is such that Py is a cyclic projective, then P @1 Posy (P, T) = Posy(P,P) in
SPOSs.

Proof. Note that the right S-action on Posr (P, P) € Posg is defined by (f-s)(p) := f(s- p) (see (1)) and the
actions on Posy (P, T) € rPosg are defined in Lemma 3(1). We define a mapping u : P®r Posr (P,T) —
Posr (P, P) by

pa®f):=a-f(-),

a € P, f €Posp(P,T). Since

plaf)(p-t)y=a-f(p-t)=a-(f(p)t) =(a-f(p)) -t = (u(@®f)(p))-t

foralla,p € P, f € Posr(P,T),t € T, and since U(a® f) : P — P obviously preserves order, it is a morphism
in Posr.

Let us prove that y preserves order. Suppose that ¢ ® f < @ ® f’ in P® Posp(P,T), a,d € P,
f,f € Posy(P,T). Then there exist a natural number n and ay,...,a, € A, f>,...,fn € Posp(P,T),
fy.. sty .., u, €T such that

a < ai-h
aj-uy < ax-h th-f < u-fp
a-uy < a3tz hefs < up-f3
ap U, < a tn'fn < Mn'f,'

Applying the morphisms of the right hand side column to an element p € P we obtain

a < ap-fy
aj-uy < axh nflp) < wfa(p)
a-uy < az-t3 bfa(p) < waf3(p)
Ay Uy < d tnfn(p) < unf/(p)7

which implies u(a®@ f)(p) =a- f(p) < d - f'(p) = u(d ® f)(p) in P. In this way we have shown that
L(a® f) < p(d @ f') in Posy(P,P) (in particular, that u is well defined and order preserving).
To prove that u is a morphism in gPosg we note that

p(a@f)-s)(p) = w@axf-s)(p)=a-(fs)(p)=a- f(s-p)
pla® f)(s-p)= (@ f)-s)(p )Zu(s (@a®f))(p)
= u(s-a®f)(p)=(s-a)-f(p)=s-(a f(p))
= s-u(@®f)(p)

foralla,p € P, f € Posy(P,T),s € S.

By Proposition 1 there exist morphisms PéT in Posy with B oo = 1p. To see that u is surjective,
take g € Posy (P, P) and denote a := 3(1), f := otog. Then

B(1)(a(g(p))) =B(la(e(p))) = (Ba)(g(p)) = g(p)

for every p € P and hence p(a® f) = B(1)-(aog)(—) =g. To prove that u reflects order, suppose that
a-f(=)<d-f'(-),a,d €P,f,f €Posp(P,T). Thena- f(B(1)) <d- f(B(1)). Note that

((foB)(1)-a)(p) = (foB)(alp) = (foB)(a(p)) = (foBoa)(p) = f(p)
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forevery p € P,so (fof)(1)-a = f, and similarly ("o )(1)- & = f’. Consequently,
a®f = a®(fop)(l)-a=a-(fof)(l)@a<d (fof)(l)®a
= de(fop)l)-a=daf. O

Lemma 5. For every sPr € gPosy
1. the set sPos(P, P) can be considered as an object of tPosy with the actions defined by

ft = pof, 3)
t-f = fop, 4)
f€sPos(PP),tcT,
2. p : ¢Ty — sPos(P,P) is a morphism in rPosr.
Proposition 6. If a biposet sPr € sPosr is such that sP is a cyclic projective, then Posr(P,T) ®gs P =
Posr (sPos(P,P),T) in 7Posr.

Proof. Note that the right S-action on Posy(P,T) € rPosg is defined by (1) and the left T-action by
(2), the T-actions on gPos(P,P) € yPosy are defined by (3) and (4) in Lemma 5, the right T-action on
Posy(sPos(P,P),T) € Posy is defined by (m-1)(f) :=m(t- f) = m(f op;) (see again (1)) and the left
T-action on Posy (sPos(P,P),T) by (2). We define a mapping

v : Posy (P, T) ®s P — Posy(sPos(P,P),T)
by
v(g®@p)(f) :=g(f(p)),

g € Posr(P,T), p € P, f € sPos(P, P). First we show that v preserves order. Suppose that g®@ p < ¢’ ® p in
Posr(P,T)®sP, g,¢ € Posr(P,T), p,p' € P. Then

g S 8181
8121 S 82 s s1p < 21 p2
822 S 883 S2pp S Pp3
gntn < & Sn P < P
for some gi,...,8, € Posy(P,T), p2,...,Pn € P, S1,...,8n,21,-..,2n € S. Using these inequalities, for every

f € sPos(P, P) we have

vigap)(f) = &(f(p) <& -s1)(f(p) =81(s1-f(p)) =8:1(f(s1-P))
g1(f(z1-p2)) =g1(z1- f(p2)) = (g1-2)(f(p2)) < ...
(gn-z)(f(P) <& (F(P) = v(g' @ p")(f),

and hence v is order preserving (therefore also well defined).
Next we prove that v(g ® p) : sPos(P,P) — T is a morphism in Posy. Indeed,

v(gop)(f-1)=g((f-1)(p)) =8((piof)(p)) = 8(f(p)-1) = 8(f(p)) -t = (V(g®p)(f)) 1
for all g € Posr(P,T), p € P, f € sPos(P,P),t € T, and obviously v(g ® p) preserves order. Also
v((g®@p)-1)(f) v(igap-1)(f)=g(f(p-1)) =g((fop)(p))
= v(g®p)- vigep)-1)(f),
vit-(g@p)(f) = vi-gop)(f)=@-g)(f(p)=18(f(p)) =t(v(g@p)(f))
= (t-v(g®p))(f)

)=
(

<
<

=
)=
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forall g € Posp(P,T), pe P, t €T, f € sPos(P,P), and hence Vv is a morphism in 7Posr.

Since gP is a cyclic projective, by the dual of Proposition 1 there exist morphisms P%S in gPos with
B o o = 1p. By the dual of Lemma 1 and the proof of Lemma 2 (1¢) of [6], the morphisms
v : Posy(P,T)®sS — Posp(P,T), g®s+— g-s, in Posg,
¢ : sPos(S,P) — P, u+ u(l), in Posy,
are isomorphisms. Hence also
Posy(—,T)(¢) = —o ¢ : Posy(P,T) — Posy(sPos(S,P),T)

and the composite
Vs =(—o@)oy: Posr(P,T)®sS —> Posr(sPos(S,P),T)

are isomorphisms in Pos. Note that

Vs(g@s)(u) = (Y(g®@s)o@)(u) = w(g@s)(u(1)) = (g-9)(u(1)) = g(s-u(1)) = g(u(s))

forall g € Posy(P,T), s € S, u € sPos(S,P). Since

(=o(=0B))ovs)(g®s))(f) = (vs(g®s)o(—0p))(f)
= vs(g®@s)(foB)=g((foB)(s))
= g(f(B(5))) =v(g®@B(s))(f)
= ((vo(1®p))(g®s))(f),
(vso(l®a))(g®p))(u) = vs(g®alp))(u)=g(u(a(p)))
= v(g@p)uoa)=(v(g@p)o(—oa))(u)
= (((=o(=oa))ov)(g@p))(u)

forall g € Posp(P,T), s € S, f € sPos(P,P), u € sPos(S,P), the left hand square and the right hand square
in the diagram

)
(

Vs

Posr(P,T)®sS Posr (sPos(S,P),T)

1®ﬁ‘ ]16@0& O(Oﬁ)k ‘O(Oa)

Posr(P,T) ®s P Y Posr(sPos(P,P),T)

commute. The equality foa = 1p implies (10 )0 (1@ ®) = Ipys, (pr)ep and (—o(—of))o(—o(—oa)) =
1pos; (sPos(p,p),T)- Then V is a retraction in Pos, because

o(1®B)ovy'o(—o(—oa))=(—o(—0P))ovsovs' o(—o(—0)) = lpes(spos(rp)T):

and similarly it is a coretraction. Therefore it is an isomorphism in 7Posr. O

There is an isomorphism between the category sPosr and the category of contravariant Pos-functors
1 — Posr, where 1 is the category with one object *, 1(x,%) = S, and the composition in 1 is given by the
multiplication in S. The Pos-functor P : 1 — Posy corresponding to a biposet sPr is given by the assignment
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The following lemma is easy to verify.
Lemma 6. If a biposet sPr is Pos-prodense and sPr = sQr in sPosr, then also Q7 is Pos-prodense.

Theorem 5. For a biposet sPr € sPosr, the following assertions are equivalent.
1. sPr is Pos-prodense.

2. sPr is faithfully balanced and sP,Pr are cyclic projective generators.

3. There exists a biposet 7Pg € 7Posg such that

PrP =S in gPosg,
ProsP=T in 7Posy.

Proof. 1. = 2. Let gPr be Pos-prodense and consider the pomonoid homomorphism
A :S — Posyp(P,P),s+— A =P(s)

(see Proposition 3). This morphism is an isomorphism of posets (and hence an isomorphism of pomonoids,
but also an isomorphism in sPosg by the dual of Lemma 5) because the functor P is Pos-fully faithful by
Theorem 2.8(e) of [10]. Since the functor Posy (P, —) : Posy — Posg is faithful, Py is a generator in Posr.
Since Posr (P, —) preserves epimorphisms, Pr is projective. Because Posy (P, —)(P) = Posy(P,P) = Sg €
Posg is a cyclic right S-poset, it is indecomposable, and hence also Py is indecomposable because Posy (P, —)
reflects coproducts (disjoint unions). Thus Pr is an indecomposable projective generator and hence a cyclic
projective generator. By Lemma 2, ¢Pr is faithfully balanced. By Proposition 4, P is a cyclic projective.
By the dual of Proposition 4, sP is a generator.

2. = 3. Assume that gPr is faithfully balanced and ¢P,Pr are cyclic projective generators. Then
T = gPos(P,P) as pomonoids, but due to Lemma 5 also as (7, T)-biposets, and similarly S = Posz (P, P)
in gPosg. Hence, for the biposet 7P := Posy (P, T) € rPoss we have isomorphisms

P*®@sP=Posp(PT)®sP =  Posr(sPos(P,P), T = Posr(T,T) = T

Proposition 6 faithfully_balanced Lemma 3

in 7Pos7, and
PRrP*=P®rPosp(P,T) =  Posr(PP) =
Proposition 5 faithfully balanced
in SPOSs.
3. = 1. For P, P* consider the Pos-functors F = — ®g P : Poss — Posy and G = — ®7 P* : Posy — Possg.
For every As € Posg,

(GF)(As) = (A®sP) @7 P* 2 A®Rs (PRTP*) X ARsS 2 A

in Posg and all these isomorphisms are natural in A. Hence GF = 1pgs,, and similarly F'G = 1p,s,. Since
G is a Pos-equivalence, by Theorem 2(a) there exists a biposet sQ} € sPosr such that G = Posy (Q*, —).
By part (d) of the same theorem, — ®g Q™ is an inverse of — ®7 P* = G. Since also F is an inverse of G,
—®Rs0" =2 F =—®gP. By Lemma4, Q* = P in gPosy. Since G is a Pos-equivalence and G = Posy (Q*, —),
sO7 is Pos-prodense, and, by Lemma 6 so is gPr. O

From Corollary 1 and Theorem 5 we obtain the following result.
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Corollary 3. Pomonoids S and T are Morita equivalent if and only if there exist biposets sPr € sPost and
Qs € rPosg such that

PRro=S§ in sPosg,
ORsPX=T in 7Pos7.

4. MORITA CONTEXTS

In this section we consider Morita contexts for pomonoids and prove Morita .

Definition 4. A Morita context is a six-tuple (S,T,sPr,7Qs,0,0), where S and T are pomonoids,
SPT (S SPOST, TQS € TPOSS, and

0:5(PR7Q)s —sSs, ¢:7(Q®sP)r — 1Tt

are biposet morphisms such that, for every p,p’ € Pand q,q' € Q,
0(p@q) P =p-¢(qep), ¢-6(ped)=9¢@®p)q"

Proposition 7. If (S,T,sPr,7Qs,0,¢) is a Morita context, then
1. the mapping

(ﬁ P — TPOS(Q7T)7 p— ¢<_®p>7

is a morphism in sPos and the mapping
52 0— POST(PvT)a q— (P(q@_)?

is a morphism in 7Pos;
2. if O is surjective, then
(a) O is an isomorphism,
(b) Pr and 7Q are cyclic projectives,
(c) sP and Qs are generators,
(d) ¢ and ¢ are isomorphisms,
(e)A:S— End(Pr) and p : S — End(7Q) are pomonoid isomorphisms.

Proof. Note that the left S-action on 7Pos(Q,T) is defined by (s- f)(¢) = f(g-s) and the left T-action on
Posy (P, T) is defined by (- g)(p) = 1g(p) (see Lemma 3).

1. The mappings ¢(p) = ¢(-®@p)=¢o(-®p):Q—Tand ¢(q9) =9(q®—)=¢o(q®—):P—T
are morphisms in 7Pos and Posr, respectively, because the mapping —® p : @ — Q ® P is a morphism in
7Pos, ¢® — : P — Q® P is a morphism in Posz, and ¢ is a morphism in 7Posy. If p < p/, p,p’ € P, then
—®@p < —®p,and hence ¢(p) < ¢(p'), which means that ¢ is order preserving. Analogously ¢ is order
preserving. Foreveryse€ S,t€T,pc P,and g € Q,

O(s-p)q) = 0(gRs-p)=0(qg-s@p)=d(—®p)(g-s)=(s-9(p))(q),

o(t-q)(p) = 0(t-qop)=1¢(qp)=1(d(q)(p)) = (t-0(q))(p).

Thus ¢ is a morphism in sPos and ¢ in 7Pos.
2. Assume that 6 is surjective and let 1 = 0(p; ®¢q;), where p; € P, 1 € Q.
(a) We need to prove that 0 reflects order. Indeed, if 0(p®¢g) < 6(p’' ®¢'), then

P®qg = 0(p1®q1) pRq=p1-0(q1@p)Rqg=p1RP(q1®@p)-q
= piRq-0(pRqg) <p1Rq-0(pR¢)=p1R¢(@1®p) -4
= p10(@ep)®d=0p®q) peod=pcdq.
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(b) For the morphisms /,,, : T — P and ¢(q1 ® —) : P — T in Posy we have

(Upodp(qr®=))(p)=p1-9(@1®@p)=0(p1@q1) - p=p

for every p € P. Thus Pr is a retract of T, that is, a cyclic projective by Proposition 1. For rQ
the proof is analogous.
(c) Forevery s = 0(p®q) € S we can calculate

s = 0(peq)b(p1eq)=0(pRq-0(p1@q)) =0(pR¢(qp1)-q1)
= 0(p-0(q@p1)®@q1)=0(—2q1)(p- (g p1)),

and hence the left S-poset homomorphism 6(—®q; ) : sP — S is an epimorphism. Consequently,
sP (and, symmetrically, Qs) is a generator by Theorem 1.
(d) We define a mapping ¥ : 7Pos(Q,T) — P by

W (h) == p1-h(q1).
Obviously, J is order preserving. Note that, for every i € rPos(Q,T) and g € Q,
h(q) =h(q-1) =h(g-0(p1®q1)) = h(@(g®p1)-q1) = 9(g® p1)h(q1).
Therefore,
W(s-h) = pi((s-h)(q1)) = p1-h(q1-s) = p1-9(q1-s®p1)h(q1)
= (p1-¢(q1-s®@p1))-h(q1) = (6(p1®q1)s- p1)-h(q1)
= s-(p1-h(q1)) =s-W(h)

A

for every s € S, i.e. ¥ is a morphism in gPos. Moreover, the equalities

@) (h)(q) = d(p1-h(q1))(q) =0(q®pi-h(q1)) = ¢(q@p1)h(q1) = h(q),
(d)(p) = W(o(-®p))=p1-9(1®p)=60(p1®q1) p=p,

pEP, g€ Q, herPos(Q,T), prove that ¢ and ¥ are mutually inverse isomorphisms in sPos.
The inverse Y : Posy(P,T) — Q of ¢ is defined by ¥(g) = g(p1) - q1-
(e) By Proposition 3, the mapping A : s — Ay : Pr — Pr is a pomonoid homomorphism. We define a
mapping i : End(Pr) — S by
p(h) == 6(h(p1) @ q1).

Then u(1p) =1 and

p(hi)p(ha) = 0(hi(p1) ©q1)6 (hz(m)@m):9(h1(191)®fh'9(}12(171)®Q1))
0(hi(p1) @ 9(q1 ®ha2(p1))-q1) = (i (p1) - 9(q1 @ h2(p1)) ®q1)
6(hi(p1- ¢(41®hz(p1)))®m =0(hi(8(p1®q1) -ha(p1)) ®4q1)
0(hi(ha2(p1)) @ q1) = u(hiohy)

for every hj,hy € End(Pr). Also u is order preserving, and hence a homomorphism of
pomonoids. Finally,

(MUA)(s) = 1(As) =0(s-p1®@q1) =s0(p1 @q1) =S5,
(Au)(R)(P) = Aogn(pr)eq)(P) = 0(h(p1) @ q1)-p=h(p1)-0(q1 @ p)
= h(p1-9(q1®p)) =h(0(p1®q1)-p) =h(p)
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for every s € S, p € P and h € End(Pr), so A and u are isomorphisms. The proof for p is
analogous. U

Proposition 8. If Pr € Posr and S = End(Pr), then sPr € sPosr. If P* = Posy(P,T), then P € rPoss.
Moreover,
1. there is a Morita context (S,T,sPr,rPs,0p,p), where

Op(p®q)=p-q(—)=1,0q and ¢p(q®p)=q(p),

2. Pr is a cyclic projective if and only if Op is surjective,
3. Pr is a generator if and only if ¢p is surjective,
4. Pr is a cyclic projective generator if and only if Op and ¢p are both surjective.

Proof. The required actions are defined by

s-p = s(p),
(t-q)(p) == tq(p),
(q-5)(p) == q(s-p) =q(s(p)),

s€ End(Pr),p€ P,t €T, q € P* (see Lemma 3 for the actions on P*).
1. For every p € P and g € Posr(P,T), the composite /, o g of two morphisms in Posz is an endo-
morphism of Pr. Note that

(lpiog)(P) = (p-1)-q(p) = p-(tq(p")) = L,((t- @) (P)) = (Lo (t-q))(P)

forevery p,p' € P,t € T,q€ P*,s0l,,0q=1,0(t-q). If now pRq < p'®q' in P&7 P*, i.e.

p < pi-t
pr-uy < prbp g < u-q
P2y < p3-t3 h-qy < Uz-q3
Pn-lnp < P/ by gn < ”n’q/7

for some py,....,pn € P, q2,...,qn € P* and 1y,... ty,uy,...,u, € T, then
lyog <lpnog=1lyo(ti-q) <lpo q)=1lpwoqy<...<lpuod <lyoq.

Hence 6p is well defined and order preserving.
Ifgop<qd®p inP*®QsP, p,p’ € P, q,q € P*, then we have inequalities

qg < q1°5]1
q1°721 < q2°52 s1p < 21-p2
q2-22 < q3°53 §$2-p2 < 22°P3
q;fzn <6]/ sn'pn <Zn'P/

for some pa,....pn €P, q1,--.,qn € P*, 51,...,8:,21,---,2n € S, and hence

(q1-51)(P) = q1(s1-p) < q1(z1-p2) = (q1-21)(p2) < (q2-52)(p2)
o < (Gn50)(Pn) = Gn(Sn-Pn) < qu(z0-P') = (gn-2) (D) < 4'(P).



234 Proceedings of the Estonian Academy of Sciences, 2011, 60, 4, 221-237

Therefore ¢p is well defined and order preserving. From
Op(s-p@q-5)(p") = (s-p)-((g-5)(P) = (s-p) (a(s'(P")))
= s5-(p-q(s'(p')) = s(Bp(p2 )(s' (1))
= (s00p(p@4q)os)(p),
op(t-q@p-1') = (t-q)(p-t") =1q(p-1') =tq(p)t' = t9p(q® p)t’,

p
p

s,s' €8,t,/' €T, p,p' € P, g€ P*, it follows that Op and ¢p are biposet morphisms. Also,
Op(p2q)-p = (p-q(=))-p' = (p-q(-))(P) = p-q(p)
=p-or(q@p),
(q-6p(p2d))(P) = a((p-d(=)(P) =alp-d'(P')) = alp)d (V)
= ¢r(q@p)d (P') = (¢r(a®p)-4)(P),
forall p,p’ € P, q,4’ € P*.

o
2. Necessity. If Pr is a cyclic projective, then by Proposition 1 there exist morphisms P—=T in Posy

such that B o & = 1p. Take any f € End(Pr). Since

(payo(aof)(p) =B(1)-a(f(p)) = B(a(f(p))) = f(p)

for every p € P, we have Op(B(1) @ (oo f)) = lgyo(aof) = f.
Sufficiency. If Op is surjective then there exist p € P and g € Posy (P, T) suchthat 1p = 6p(p®q) =1, 04.
Thus Pr is a cyclic projective by Proposition 1.

Y
3. Necessity. If Pr is a generator, then, by Theorem 1, there exist morphisms P—T in Posy such that
S

yo8 = 1. Hence, forevery t € T, ¢p(y® 6(t)) = y(6(t)) =1.
Sufficiency. If ¢p is surjective, then there exist p € P, g € Posy(P,T) such that 1 = ¢p(¢® p) = q(p).
Hence (gol,)(t) =q(p-t) =q(p)-t =t foreveryt € T, thatis, gol, = 17. By Theorem 1, Pr is a generator.
4. This follows from 2 and 3. ]

Theorem 6. Pomonoids S and T are Morita equivalent if and only if there exists a Morita context
(S,T,sPr,7Qs,6,¢) with 6 and ¢ surjective.

Proof. Necessity follows from Proposition 8 and Theorem 3.

Sufficiency. Suppose that (S,7T,sPr,70s,0,¢) is a Morita context with 6 and ¢ surjective. Then,
by Proposition 7, Pr is a cyclic projective. By the analogue of Proposition 7, Pr is a generator and
A : T — End(Qy) is a pomonoid isomorphism. Hence S and T are Morita equivalent by Theorem 3. U

Theorem 7 (Morita I). Let Pr be a cyclic projective generator, S = End(Pr) and 1 Qs = Posy (P, T). Then
1. —®7 Q : Posy — Posg and — ®s P : Poss — Posy are mutually inverse Pos-equivalence functors;
2. P®r — : 7Pos — sPos and Q ®g — : sPos — rPos are mutually inverse Pos-equivalence functors.

Proof. 1. From Proposition 8 it follows that there exists a Morita context (S,T,sPr,7Qs, Op, op) with 6p
and ¢p surjective. By Proposition 7, gP is a generator, Pr is a cyclic projective, and A : S — End(Pr) is a
pomonoid isomorphism. By the analogue of Proposition 7, P is a cyclic projective, Pr is a generator, and
p : T — End(sP) is a pomonoid isomorphism. Hence gPr is Pos-prodense by Theorem 5, and the functor
G = Posr (P, —) : Posy — Posg is a Pos-equivalence. By Theorem 2(b) there exists a biposet 7 Q% such that
G=—®r @, butthen rQs = G(T) = 7Q% and G = — ®7 Q. By Theorem 2(d), — ®s P : Posg — Posr is a
Pos-equivalence inverse to — @7 Q.

2. This can be proven similarly. U
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S. PICARD GROUPS

In this section we give a proof of Morita III for pomonoids.
Consider the category &, where
e objects are pomonoids,
e morphisms 7——S are isomorphism classes [P] of Pos-prodense biposets sPr € sPosr,

e the composite of T&S AU is defined by

(X]o[P]:= [y(X @sP)r],

e the identity morphism of a pomonoid S is the isomorphism class [S] of the Pos-prodense biposet sSs.

To see that the composition is well defined, suppose that P = P’ in sPosy and X = X’ in yPoss.
Then, since the functors X ®g — : sPosy — yPosy and — ®g P : yPoss — yPosr preserve isomorphisms,
X@P2X®P =2X'"®P in yPosr. The fact that [S] is the identity morphism of an object S of & follows
from Lemma 1 and its dual. The composition is associative because the tensor multiplication of biposets is.

Let Pre be the category of preordered sets with preorder preserving mappings as morphisms.

Proposition 9. The category & is a Pre-groupoid.

Proof. By Theorem 5, &7 is a groupoid, where the inverse of a morphism [P]: T — Sis [P*] : S — T. We
write gPr < sPy if there exists a regular monomorphism sPr — sPj in sPosz, and we define a relation < on
amor-set Z(S,T) by
[P] < [P,] < SPT S]SP%
. o . . . : [P] o ..
Clearly this relation is well defined, reflexive, and transitive. Consider morphisms S—=7 ——U in &
[P']

such that [P] < [P']. Since yQr is Pos-prodense, Qr is projective and hence po-flat in Posy (Theorem 3.23
of [11]). This means that the functor Q7 ® — : rPos — Pos preserves regular monomorphisms, but then
also the functor yQr ® — : yPosg — yPos preserves regular monomorphisms, in particular ;(Q ®7 P)s <
v(Q®r P')s. Consequently,

[Q]o[P]=[Q@P]<[Q®P]|=[Q]o[P]

and the preorder < is compatible with the composition from the left. Similarly it is compatible with the
composition from the right and therefore &7 is a Pre-category. g
Corollary 4. The endomorphism monoid £ (S,S) of a pomonoid S in & is a group.

Definition 5. We denote the group 2 (S,S) by Pic(S) and call it the Picard group of a pomonoid S.

Corollary 5. Picard groups of Morita equivalent pomonoids are isomorphic.

Proof. Due to Corollary 1, two pomonoids are Morita equivalent if and only if they are isomorphic objects
in . Endomorphism monoids of isomorphic objects of a category are isomorphic. O

Consider the category .#, where
e objects are the categories Posg, where S is a pomonoid,
e morphisms Posg——Posy are isomorphism classes [F| of Pos-equivalence functors F : Poss—Posr,
e the composition is given by the composition of functors.

Theorem 8 (Morita IIl). The categories .# and &P are dually isomorphic.
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K
Proof. We define contravariant functors . —= &’ by the assignments
L

Poss —— S S +——— Posg
[F] [SF(S)T] [SPT] [_®SP] )
Posy —>T T ——— Posr

respectively. Let F : Poss — Posy and G : Posy — Posy be Pos-equivalence functors. By Theorem 2,
G=Z—Qr G(T), SO SG(F(S))U = S(F(S) KT G(T))U and

K([G]o[F]) = K([GoF]) = [sG(F(S))v] = [s(F(S)®r G(T))u]
= [sF(S)r] o [rG(T)u] = K([F]) o K([G]).

If ¢Pr € sPosy and y X € yPosg, then

L([uXs]o[sPr]) = L([u(X ®s P)r]) = [~ ®u (X @5 P)]
(

[(—®sP)o(—®uX)]=[-®sPlo[-®yX]
L([sPr]) o L([uXs])-

It is easy to see that K and L preserve identities. Moreover, by Lemma 1 and Theorem 2,

(KL)([sPr]) = K([=®sP]) = [s(S@P)r] = [sPr],
(LK)([F]) = L([sF(S)r]) = [- @5 F(S)] = [F]. .

Remark 2. Let us write F < F’ if there is a regular monomorphism y : F — F’ in the category of Pos-
functors from Posg to Posr, and define

[F]<[F'| < F<JF'.

This way .# becomes a Pre-category.

By Theorem 3, two pomonoids S and 7 are Morita equivalent if and only if the full subcategories
CPGg and CPGy of Posg and Posy generated by the cyclic projective generators are Pos-equivalent. Let us
consider the Pre-category .#, where objects are categories CPGg (S is a pomonoid), morphisms of .# are
the isomorphism classes of Pos-equivalence functors between them, and a preorder of morphisms is defined
as above. Then the functors

V=2

L

that are defined similarly to K and L are mutually inverse isomorphisms. Moreover, K and L are Pre-
functors (and hence .# and & are isomorphic as Pre-categories). Indeed, if [F] < [F'], then K([F]) =
[sF(S)r] < [sF'(S)r] = K([F']). If [sPr] < [sPr], then there is a regular monomorphism m : P — P’
in gPosr. Therefore L([sPr]) = [— ®s P] < [— ®s P'] = L([sPr]), where — ®s P 4 — ®g P’ because

M = (Ma)aecpGs : — ®s P — — @5 P’ with
HA:IA@m(A®SP)TH(A®SP/)T7 a®l)'_)a(®’/n(1)/)7

is a regular monomorphism in Posy, because the cyclic projective generator Ag is po-flat.
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Morita-teoreemid osaliselt jarjestatud monoidide jaoks

Valdis Laan

Osaliselt jarjestatud monoide S ja T nimetatakse Morita-ekvivalentseteks, kui parempoolsete jirjestatud S-
poliigoonide kategooria ning parempoolsete jirjestatud 7-poliigoonide kategooria on ekvivalentsed kui iile
osaliselt jarjestatud hulkade kategooria Pos rikastatud kategooriad. Me anname Pos-protihedate bipoliigoo-
nide (iile osaliselt jirjestatud monoidide) kirjelduse ja tdestame Morita-teoreemid I, II ja III.



