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Abstract. Two partially ordered monoids S and T are called Morita equivalent if the categories of right S-posets and right T -posets
are Pos-equivalent as categories enriched over the category Pos of posets. We give a description of Pos-prodense biposets and
prove Morita theorems I, II, and III for partially ordered monoids.
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1. INTRODUCTION

At the beginning of the 1970s, Knauer [5] and Banaschewski [2] proved the first fundamental results about
Morita equivalence of monoids, establishing a theory parallel to the classical theory of Morita equivalent
rings (see [1] for an overview about that). An overview of Morita theory of monoids can be found in [4]. The
aim of this paper is to develop a theory of Morita equivalent partially ordered monoids (shortly pomonoids).
In particular, we prove the analogues of theorems, which (at least in the ring case, see [7]) are usually
called Morita I, Morita II, and Morita III. In Morita I we show that the endomorphism pomonoid S of a
cyclic projective generator over a pomonoid T is Morita equivalent to T . In Morita II we prove that the
functors that induce a Morita equivalence of two pomonoids are (up to natural isomorphism) the tensor
multiplication functors. Morita III gives a connection between isomorphism classes of equivalence functors
and isomorphism classes of biposets with certain properties.

In this paper, S and T will stand for pomonoids. A poset (A,6) together with a mapping A× S →
A,(a,s) 7→ a · s, is called a right S-poset (and the notation AS is used) if (1) a · ss′ = (a · s) · s′, (2) a ·1 = a,
(3) a 6 b implies a · s 6 b · s, and (4) s 6 s′ implies a · s 6 a · s′, for all a,b ∈ A, s,s′ ∈ S. Left S-posets can
be defined analogously. A left T -poset and right S-poset A is called a (T,S)-biposet (and denoted T AS) if
(t · a) · s = t · (a · s) for all a ∈ A, t ∈ T and s ∈ S. By PosS (SPos, T PosS) we denote the category of right
S-posets (resp. left S-posets, (T,S)-biposets), where the morphisms are order and monoid action preserving
mappings. These categories are enriched over the category Pos of posets (with order preserving mappings as
morphisms), that is, the morphism sets are posets with respect to pointwise order. A Pos-functor between
such categories is a functor that preserves the order of morphisms.

Recall that epimorphisms in PosS are surjective morphisms, monomorphisms are injective morphisms,
and regular monomorphisms are order embeddings (see Theorem 7 of [3]). It is clear that every coretraction
(that is, a left invertible morphism) in PosS is a regular monomorphism.

For a fixed element a ∈ AS, the mapping la : S→ A, s 7→ a · s, is a morphism in PosS. For fixed elements
s ∈ S, t ∈ T , and SAT ∈ SPosT , the mappings ρt : A→ A, a 7→ a · t, and λs : A→ A, a 7→ s ·a, are morphisms
in SPos and PosT , respectively.
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Definition 1. Pomonoids S and T are called Morita equivalent if the categories PosS and PosT are Pos-
equivalent.

The following lemma is easy to verify.

Lemma 1. For every SAT ∈ SPosT there is an isomorphism S⊗A∼= A in SPosT , natural in A.

An object AS in the category PosS is a generator if the functor PosS(A,−) : PosS → Pos is faithful.
The following results are proved in [6].

Theorem 1. The following assertions are equivalent for a right S-poset AS:
1. AS is a generator.
2. There exists an epimorphism π : AS → SS.
3. SS is a retract of AS.

Proposition 1. Cyclic projectives in PosS are precisely retracts of SS.

Proposition 2. An S-poset AS is a cyclic projective generator in PosS if and only if AS ∼= eSS for an
idempotent e ∈ S with eJ 1.

For every AT ∈ PosT we consider the set End(AT ) = PosT (A,A) as a pomonoid with respect to
composition and pointwise order. For every SA ∈ SPos we consider the set End(SA) = SPos(A,A) as a
pomonoid with multiplication f •g := g◦ f , f ,g ∈ End(SA), and pointwise order.

Proposition 3. For every SAT ∈ SPosT , the mappings

λ : S→ End(AT ), s 7→ λs,
ρ : T → End(SA), t 7→ ρt ,

are pomonoid homomorphisms.

Definition 2. We call a biposet SAT faithfully balanced if the pomonoid homomorphisms λ : S→ End(AT )
and ρ : T → End(SA) are isomorphisms.

Proposition 4. Let SAT ∈ SPosT be a faithfully balanced biposet. Then AT is a generator if and only if SA is
a cyclic projective.

Lemma 2. Let SAT ∈ SPosT . If AT is a cyclic projective generator and λ : S→ End(AT ) is an isomorphism
then SAT is faithfully balanced.

2. Pos-EQUIVALENCE FUNCTORS

In this section we derive Morita II from a general theorem of [10] about Morita equivalence of enriched
categories. Theorem 2 below will use the structures defined in the following lemma.

Lemma 3.
1. (a) For every SAT ∈ SPosT and CT ∈ PosT , the set PosT (A,C) can be considered as an object of PosS

with the action defined by
( f · s)(a) := f (s ·a). (1)

In particular, the set PosT (A,T ) can be considered as an object of T PosS with the actions defined
by (1) and

(t · f )(a) := t f (a). (2)

(b) For every SAT ∈ SPosT the assignment C 7→PosT (A,C) defines a covariant Pos-functor PosT (A,−) :
PosT → PosS.

(c) The mapping PosT (T,T )→ T, f 7→ f (1), where the left and right T -action on PosT (T,T ) are defined
by (1) and (2), is an isomorphism in T PosT .
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2. (a) For every T BS ∈ T PosS and TC ∈ T Pos, the set T Pos(B,C) can be considered as an object of SPos
with the S-action defined by

(s · f )(b) := f (b · s).
(b) For every T BS ∈ T PosS the assignment C 7→ T Pos(B,C) defines a covariant Pos-functor T Pos(B,−) :

T Pos→ SPos.

In the notation of [10] (Def. 2.6), PosT (A,−) : PosT → PosS is the functor A∨.

Definition 3. An (S,T )-biposet SPT is called Pos-prodense (see Theorem 2.8 of [10]) if the functor
PosT (P,−) : PosT → PosS is a Pos-equivalence.

For the details about tensor products of S-posets we refer to [12]. As in [10], by a Pos-adjoint we mean a
Pos-functor that has a left adjoint functor which is also a Pos-functor. A Pos-cocontinuous functor is a Pos-
functor that preserves all small Pos-colimits. Theorem 3.11 of [10], specified for pomonoids (one-object
Pos-categories), gives the following.

Theorem 2. Let S,T be pomonoids.
(a) If F : PosS → PosT is a Pos-adjoint functor, then there exists a biposet T QS such that F ∼= PosS(Q,−).
(b) If F : PosS → PosT is a Pos-cocontinuous functor, then there exists a biposet SPT such that F ∼=−⊗S P.
(c) If F : PosS → PosT is Pos-adjoint, Pos-cocontinuous, and Pos-fully faithful, then S(P⊗T Q)S ∼= SSS,

where SPT ,T QS are as in (a) and (b).
(d) Let F : PosS → PosT be a Pos-equivalence and let SPT ,T QS be as in (a) and (b).

(i) The functor −⊗T Q : PosT → PosS is a Pos-equivalence inverse of −⊗S P and PosS(Q,−).
Furthermore,

T (Q⊗S P)T ∼= T TT , SPT ∼= PosS(Q,S), T QS ∼= PosT (P,T ).

(ii) The functor Q⊗S− : SPos→ T Pos is a Pos-equivalence with inverses P⊗T − and T Pos(Q,−).
(e) If a biposet SPT is Pos-prodense, then the functor SPos(P,−) : SPos→ T Pos is a Pos-equivalence.

This gives us a necessary and sufficient condition for Morita equivalence of two pomonoids.

Corollary 1. Pomonoids S and T are Morita equivalent if and only if there exists a Pos-prodense biposet SPT .

Proof. Necessity. Let G : PosT →PosS be a Pos-equivalence functor. By Theorem 2(a), there exists a biposet
SPT such that G∼= PosT (P,−), hence also PosT (P,−) is a Pos-equivalence and SPT is Pos-prodense.

Sufficiency is clear. ¤
Let us give some more conditions for Morita equivalence of two pomonoids. By CPGS we denote the

full subcategory of PosS generated by all cyclic projective generators. We say that a posemigroup S is an
enlargement of a posemigroup T (cf. [8]) if T is isomorphic to a subposemigroup S′ of S such that S = SS′S
and S′ = S′SS′.

Theorem 3. The following assertions are equivalent for pomonoids S and T .
1. S and T are Morita equivalent.
2. The categories CPGS and CPGT are Pos-equivalent.
3. There exists QS ∈ CPGS such that T ∼= End(QS) as pomonoids.
4. There exists an idempotent e ∈ S such that eJ 1 and T ∼= eSe as pomonoids.
5. S is an enlargement of T .

Proof. 1. ⇒ 2. It is not difficult to see that Pos-equivalence functors between PosS and PosT take cyclic
projective generators to cyclic projective generators. Hence they induce a Pos-equivalence between CPGS
and CPGT .

2. ⇒ 3. Suppose that CPGS
F //oo
G

CPGT are mutually inverse Pos-equivalence functors and denote

QS := G(T ) ∈ CPGS. Then T ∼= End(TT )∼= End(QS) as pomonoids.
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3.⇒ 4. Since QS is a cyclic projective generator, by Proposition 2 there exists an idempotent e ∈ S such
that eJ 1 and Q∼= eS in PosS. Hence

T ∼= End(QS)∼= End(eSS)∼= eSe

as pomonoids, where an isomorphism ϕ : End(eSS) = PosS(eS,eS)→ eSe is defined by

ϕ( f ) := f (e)

(cf. Proposition 1.5.6 of [4]).
4.⇒ 5. Let T ∼= eSe, where e ∈ S is an idempotent and kel = 1, k, l ∈ S. The equality eSe = (eSe)S(eSe)

is obvious. The equality S = S(eSe)S holds because s = kelskel for every s ∈ S. Hence S is an enlargement
of T .

5. ⇒ 4. Suppose that S′ is a subposemigroup of S such that S = SS′S and S′ = S′SS′, and there is an
isomorphism ϕ : T → S′ of posemigroups. Then e = ϕ(1) is the identity element for S′. Consequently,
S′ = eS′e⊆ eSe, but also eSe⊆ S′SS′ = S′. Thus S′ = eSe and ϕ : T → eSe is a pomonoid isomorphism. In
addition, 1 = s1s′s2 = s1s′es2 in S for some s1,s2 ∈ S, s′ ∈ S′.

4.⇒ 1. Let e∈ S be an idempotent such that eJ 1 and T ∼= eSe. It suffices to prove that PosS and PoseSe
are Pos-equivalent categories. If AS ∈ PosS then the set Ae := {a · e | a ∈ A} can be considered as a right
eSe-poset with the action (a ·e,ese) 7→ a ·ese. We define a Pos-functor F : PosS → PoseSe by the assignment

BS BeeSe
Â //

AS

BS

g

²²

AS AeeSe
Â // AeeSe

BeeSe

g

²²

,

where g : a ·e 7→ g(a ·e) = g(a) ·e ∈ Be. Similarly to the unordered case (see Proposition 5.3.12 of [4]), one
can show that F is a Pos-equivalence functor. ¤
Remark 1. One can see that pomonoids S and T are Morita equivalent if and only if SPos and T Pos are
Pos-equivalent categories by noting that cyclic projective generators in SPos are of the form Se where eJ 1,
and using a proof that is similar to the proof of Theorem 3.

Also, S is an enlargement of T if and only if S and T are enlargements of each other if and only if S and
T have a joint enlargement. This way Theorem 3 can be compared to Theorem 1.1 of [9].

Theorem 3 shows that being Morita equivalent is in the case of pomonoids very close to being
isomorphic. As in the monoid case (see [4], Corollary 5.3.14, or [2], corollary to Proposition 4), for several
large classes of pomonoids these notions coincide.

Corollary 2. Morita equivalence of the pomonoids S and T implies that S and T are isomorphic pomonoids
whenever 1 is the only idempotent in its J -class. In particular, this is true in either of the following cases:
1. S has central idempotents;
2. every right invertible element of S is left invertible or vice versa;
3. all elements of infinite order in S are powers of one element;
4. idempotents of S satisfy the ascending chain condition;
5. S satisfies the descending chain condition for principal right (or left) ideals.

A list of non-isomorphic Morita equivalent monoids (which can be regarded as trivially ordered
pomonoids) is given in [4]. We give here an example of non-isomorphic Morita equivalent pomonoids
with non-trivial order. This will be a modification of Example 7.1 from [5].

Example 1. Consider the real interval [0,1] and the monoid

S′ = { f : [0,x]→ [0,1] | x ∈ [0,1], f is strictly increasing and continuous}∪{ /0 : /0→ [0,1]}
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with the multiplication

g f : {a ∈ dom f | f (a) ∈ dom g}→ [0,1], a 7→ g( f (a)),

and order relation
f 6 h⇐⇒ dom f ⊆ dom h∧ (∀a ∈ dom f )( f (a) > h(a)).

Note that if dom f = [0,x] and dom g = [0,y], then

dom (g f ) =

{
[0,max{a ∈ [0,x] | f (a) 6 y}], if f (0) 6 y,

/0, if f (0) > y,

so, indeed, g f ∈ S′.
Let us check that S′ is a pomonoid. Suppose f ,g,h ∈ S′ and f 6 h. To prove that g f 6 gh, we first

have to show that dom (g f ) ⊆ dom (gh). If a ∈ dom (g f ), then a ∈ dom f ⊆ dom h and f (a) ∈ dom g.
Therefore h(a) 6 f (a) ∈ dom g. Since dom g is a down-set in the poset [0,1], also h(a) ∈ dom g, and hence
a ∈ dom (gh). Thus dom (g f ) ⊆ dom (gh). For every a ∈ dom f we have f (a) > h(a). Since g preserves
order and dom (g f ) ⊆ dom f , we also have (g f )(a) > (gh)(a) for every a ∈ dom (g f ). Consequently,
g f 6 gh.

To verify the inequality f g 6 hg we notice that the inclusion dom ( f g) ⊆ dom (hg) follows from the
inclusion dom f ⊆ dom h. If a ∈ dom ( f g) = {b ∈ dom g | g(b) ∈ dom f}, then f (g(a)) > h(g(a)). Hence
f g 6 hg.

For every x ∈ [0,1] let ix : [0,x]→ [0,1], a 7→ a, and consider also the mappings

k :
[
0, 1

2

]→ [0,1], a 7→ 2a,

l : [0,1]→ [0,1], a 7→ a
2 .

Note that k 6 l and ix 6 iy if and only if x 6 y. Let S be the subpomonoid of S′ generated by the set

{k, l}∪
{

ix | x ∈
[

0,
1
2

]
∪

[
3
4
,1

]}
.

It is easy to see that i 3
4

is an idempotent in S and ki 3
4
l = i1, where i1 = 1[0,1] is the identity element of S. Thus

S is Morita equivalent to i 3
4
Si 3

4
.

We claim that S and i 3
4
Si 3

4
are not isomorphic pomonoids. It can be seen that the idempotents of S are

ix, where x ∈ [
0, 1

2

]∪ [3
4 ,1

]
. So the idempotents of S that are different from the identity element i1 form

a chain that contains no supremum. But the idempotents of i 3
4
Si 3

4
are ix where x ∈ [

0, 1
2

]∪{3
4

}
. Thus the

chain of non-identity idempotents of i 3
4
Si 3

4
has the supremum i 1

2
. Hence S and i 3

4
Si 3

4
cannot be isomorphic

pomonoids, because a pomonoid isomorphism induces an isomorphism between the posets of idempotents.

For the next theorem we shall need the following lemma.

Lemma 4. Let SPT , SP′T ∈ SPosT . The functors −⊗S P,−⊗S P′ : PosS → PosT are naturally isomorphic if
and only if P∼= P′ in SPosT .

Proof. Necessity. Suppose that α : −⊗S P →−⊗S P′ is a natural isomorphism. Then αS : S⊗P → S⊗P′
is an isomorphism in PosT . Due to Lemma 1, we only need to check that αS is a morphism of left S-posets.
To this end, take any s,s′ ∈ S and p ∈ P. Since ls′ : S→ S, z 7→ s′z, is a morphism in PosS and α is a natural
transformation, the square

S⊗P S⊗P′αS
//

S⊗P

S⊗P

ls′⊗1P

²²

S⊗P S⊗P′
αS // S⊗P′

S⊗P′

ls′⊗1P′

²²



226 Proceedings of the Estonian Academy of Sciences, 2011, 60, 4, 221–237

commutes in PosT . Note that (ls′ ⊗ 1P′)(s′′⊗ p′) = s′s′′⊗ p′ = s′ · (s′′⊗ p′) for all s′′ ∈ S and p′ ∈ P′, so
ls′⊗1P′ = λs′ , where λs′ : S⊗P′→ S⊗P′, x 7→ s′x. Hence

αS(s′ · (s⊗ p)) = αS(s′s⊗ p) = (αS(ls′⊗1P))(s⊗ p)
= ((ls′⊗1P′)αS)(s⊗ p) = λs′(αS(s⊗ p)) = s′ ·αS(s⊗ p).

Sufficiency. Let ϕ : P→ P′ be an isomorphism in SPosT . If AS ∈ PosS, then the functor A⊗S− : SPosT →
PosT takes ϕ to an isomorphism 1A⊗ϕ : A⊗P → A⊗P′ in PosT . If f : A → B is any morphism in PosS,
then obviously the square

B⊗P B⊗P′
1B⊗ϕ

//

A⊗P

B⊗P

f⊗1P

²²

A⊗P A⊗P′
1A⊗ϕ // A⊗P′

B⊗P′

f⊗1P′

²²

commutes and hence (1A⊗ϕ)A∈PosS :−⊗P→−⊗P′ is a natural isomorphism. ¤
Now we can prove a theorem that corresponds to Morita II in the case of pomonoids.

Theorem 4 (Morita II). Let S,T be pomonoids and let PosS
F //oo
G

PosT be mutually inverse Pos-equivalence

functors. Then P := F(S) ∈ SPosT , Q := G(T ) ∈ T PosS and

F ∼=−⊗S P, G∼=−⊗T Q.

Proof. If PosS
F //oo
G

PosT are mutually inverse Pos-equivalence functors, then F(S) can be considered as an

object of SPosT with the left S-action defined by

s ·b := F(ls)(b)

for every b ∈ F(S). Indeed, it is known (see Lemma 5.3.1 of [4]) that such F(S) will be an (S,T )-biact.
Suppose that s 6 z, s,z ∈ S. Then ls 6 lz, hence F(ls) 6 F(lz) and s ·b = F(ls)(b) 6 F(lz)(b) = z ·b for every
b∈ F(S). If b 6 c, b,c∈ F(S), and s∈ S, then s ·b = F(ls)(b) 6 F(ls)(c) = s ·c because F(ls) is a morphism
in PosT . Hence F(S) ∈ SPosT .

By Theorem 2(b), there exist a biposet SP′T and a natural isomorphism α : F →−⊗S P′. As in the proof
of Lemma 4, ls′⊗1P′ = λs′ , and so, by naturality,

αS(s′ ·b) = αS(F(ls′)(b)) = (αSF(ls′))(b) = ((ls′⊗1P′)αS)(b) = λs′(αS(b))
= s′ ·αS(b)

for every s′ ∈ S, b ∈ F(S). This means that αS : F(S) → S⊗ P′ is a morphism in SPos and hence an
isomorphism in SPosT . By Lemma 1, SPT = SF(S)T ∼= S(S⊗P′)T ∼= SP′T in SPosT , and by Lemma 4,
F ∼=−⊗S P′ ∼=−⊗S P. Similarly, G∼=−⊗T Q. ¤

3. Pos-PRODENCE BIPOSETS

Here we give a description of Pos-prodense objects of SPosT , which, as we have seen in the previous section,
play an important role in Morita theory. First we prove some technical results.



V. Laan: Morita theorems for partially ordered monoids 227

Proposition 5. If SPT ∈ SPosT is such that PT is a cyclic projective, then P⊗T PosT (P,T ) ∼= PosT (P,P) in
SPosS.

Proof. Note that the right S-action on PosT (P,P) ∈ PosS is defined by ( f · s)(p) := f (s · p) (see (1)) and the
actions on PosT (P,T ) ∈ T PosS are defined in Lemma 3(1). We define a mapping µ : P⊗T PosT (P,T ) −→
PosT (P,P) by

µ(a⊗ f ) := a · f (−),

a ∈ P, f ∈ PosT (P,T ). Since

µ(a⊗ f )(p · t) = a · f (p · t) = a · ( f (p)t) = (a · f (p)) · t = (µ(a⊗ f )(p)) · t

for all a, p∈P, f ∈PosT (P,T ), t ∈ T , and since µ(a⊗ f ) : P→P obviously preserves order, it is a morphism
in PosT .

Let us prove that µ preserves order. Suppose that a⊗ f 6 a′ ⊗ f ′ in P⊗ PosT (P,T ), a,a′ ∈ P,
f , f ′ ∈ PosT (P,T ). Then there exist a natural number n and a1, . . . ,an ∈ A, f2, . . . , fn ∈ PosT (P,T ),
t1, . . . , tn,u1, . . . ,un ∈ T such that

a 6 a1 · t1
a1 ·u1 6 a2 · t2 t1 · f 6 u1 · f2
a2 ·u2 6 a3 · t3 t2 · f2 6 u2 · f3

· · · · · ·
an ·un 6 a′ tn · fn 6 un · f ′.

Applying the morphisms of the right hand side column to an element p ∈ P we obtain

a 6 a1 · t1
a1 ·u1 6 a2 · t2 t1 f (p) 6 u1 f2(p)
a2 ·u2 6 a3 · t3 t2 f2(p) 6 u2 f3(p)

· · · · · ·
an ·un 6 a′ tn fn(p) 6 un f ′(p),

which implies µ(a⊗ f )(p) = a · f (p) 6 a′ · f ′(p) = µ(a′⊗ f ′)(p) in P. In this way we have shown that
µ(a⊗ f ) 6 µ(a′⊗ f ′) in PosT (P,P) (in particular, that µ is well defined and order preserving).

To prove that µ is a morphism in SPosS we note that

µ((a⊗ f ) · s)(p) = µ(a⊗ f · s)(p) = a · ( f · s)(p) = a · f (s · p)
= µ(a⊗ f )(s · p) = (µ(a⊗ f ) · s)(p) = µ(s · (a⊗ f ))(p)
= µ(s ·a⊗ f )(p) = (s ·a) · f (p) = s · (a · f (p))
= s ·µ(a⊗ f )(p)

for all a, p ∈ P, f ∈ PosT (P,T ), s ∈ S.

By Proposition 1 there exist morphisms P
α //oo
β

T in PosT with β ◦α = 1P. To see that µ is surjective,

take g ∈ PosT (P,P) and denote a := β (1), f := α ◦g. Then

β (1)(α(g(p))) = β (1α(g(p))) = (βα)(g(p)) = g(p)

for every p ∈ P and hence µ(a⊗ f ) = β (1) · (α ◦ g)(−) = g. To prove that µ reflects order, suppose that
a · f (−) 6 a′ · f ′(−), a,a′ ∈ P, f , f ′ ∈ PosT (P,T ). Then a · f (β (1)) 6 a′ · f ′(β (1)). Note that

(( f ◦β )(1) ·α)(p) = ( f ◦β )(1)α(p) = ( f ◦β )(α(p)) = ( f ◦β ◦α)(p) = f (p)
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for every p ∈ P, so ( f ◦β )(1) ·α = f , and similarly ( f ′ ◦β )(1) ·α = f ′. Consequently,

a⊗ f = a⊗ ( f ◦β )(1) ·α = a · ( f ◦β )(1)⊗α 6 a′ · ( f ′ ◦β )(1)⊗α

= a′⊗ ( f ′ ◦β )(1) ·α = a′⊗ f ′. ¤

Lemma 5. For every SPT ∈ SPosT
1. the set SPos(P,P) can be considered as an object of T PosT with the actions defined by

f · t := ρt ◦ f , (3)
t · f := f ◦ρt , (4)

f ∈ SPos(P,P), t ∈ T ;
2. ρ : T TT → SPos(P,P) is a morphism in T PosT .

Proposition 6. If a biposet SPT ∈ SPosT is such that SP is a cyclic projective, then PosT (P,T )⊗S P ∼=
PosT (SPos(P,P),T ) in T PosT .

Proof. Note that the right S-action on PosT (P,T ) ∈ T PosS is defined by (1) and the left T -action by
(2), the T -actions on SPos(P,P) ∈ T PosT are defined by (3) and (4) in Lemma 5, the right T -action on
PosT (SPos(P,P),T ) ∈ PosT is defined by (m · t)( f ) := m(t · f ) = m( f ◦ ρt) (see again (1)) and the left
T -action on PosT (SPos(P,P),T ) by (2). We define a mapping

ν : PosT (P,T )⊗S P−→ PosT (SPos(P,P),T )

by
ν(g⊗ p)( f ) := g( f (p)),

g ∈ PosT (P,T ), p ∈ P, f ∈ SPos(P,P). First we show that ν preserves order. Suppose that g⊗ p 6 g′⊗ p′ in
PosT (P,T )⊗S P, g,g′ ∈ PosT (P,T ), p, p′ ∈ P. Then

g 6 g1 · s1
g1 · z1 6 g2 · s2 s1 · p 6 z1 · p2
g2 · z2 6 g3 · s3 s2 · p2 6 z2 · p3

· · · · · ·
gn · zn 6 g′ sn · pn 6 zn · p′

for some g1, . . . ,gn ∈ PosT (P,T ), p2, . . . , pn ∈ P, s1, . . . ,sn,z1, . . . ,zn ∈ S. Using these inequalities, for every
f ∈ SPos(P,P) we have

ν(g⊗ p)( f ) = g( f (p)) 6 (g1 · s1)( f (p)) = g1(s1 · f (p)) = g1( f (s1 · p))

6 g1( f (z1 · p2)) = g1(z1 · f (p2)) = (g1 · z1)( f (p2)) 6 . . .

6 (gn · zn)( f (p′)) 6 g′( f (p′)) = ν(g′⊗ p′)( f ),

and hence ν is order preserving (therefore also well defined).
Next we prove that ν(g⊗ p) : SPos(P,P)→ T is a morphism in PosT . Indeed,

ν(g⊗ p)( f · t) = g(( f · t)(p)) = g((ρt ◦ f )(p)) = g( f (p) · t) = g( f (p)) · t = (ν(g⊗ p)( f )) · t
for all g ∈ PosT (P,T ), p ∈ P, f ∈ SPos(P,P), t ∈ T , and obviously ν(g⊗ p) preserves order. Also

ν((g⊗ p) · t)( f ) = ν(g⊗ p · t)( f ) = g( f (p · t)) = g(( f ◦ρt)(p))

= ν(g⊗ p)(t · f ) = (ν(g⊗ p) · t)( f ),

ν(t · (g⊗ p))( f ) = ν(t ·g⊗ p)( f ) = (t ·g)( f (p)) = tg( f (p)) = t(ν(g⊗ p)( f ))

= (t ·ν(g⊗ p))( f )
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for all g ∈ PosT (P,T ), p ∈ P, t ∈ T , f ∈ SPos(P,P), and hence ν is a morphism in T PosT .

Since SP is a cyclic projective, by the dual of Proposition 1 there exist morphisms P
α //oo
β

S in SPos with

β ◦α = 1P. By the dual of Lemma 1 and the proof of Lemma 2 (1c) of [6], the morphisms

ψ : PosT (P,T )⊗S S−→ PosT (P,T ), g⊗ s 7→ g · s, in PosS,

ϕ : SPos(S,P)−→ P, u 7→ u(1), in PosT ,

are isomorphisms. Hence also

PosT (−,T )(ϕ) =−◦ϕ : PosT (P,T )−→ PosT (SPos(S,P),T )

and the composite
νS = (−◦ϕ)◦ψ : PosT (P,T )⊗S S−→ PosT (SPos(S,P),T )

are isomorphisms in Pos. Note that

νS(g⊗ s)(u) = (ψ(g⊗ s)◦ϕ)(u) = ψ(g⊗ s)(u(1)) = (g · s)(u(1)) = g(s ·u(1)) = g(u(s))

for all g ∈ PosT (P,T ), s ∈ S, u ∈ SPos(S,P). Since

(((−◦ (−◦β ))◦νS)(g⊗ s))( f ) = (νS(g⊗ s)◦ (−◦β ))( f )

= νS(g⊗ s)( f ◦β ) = g(( f ◦β )(s))

= g( f (β (s))) = ν(g⊗β (s))( f )

= ((ν ◦ (1⊗β ))(g⊗ s))( f ),

((νS ◦ (1⊗α))(g⊗ p))(u) = νS(g⊗α(p))(u) = g(u(α(p)))

= ν(g⊗ p)(u◦α) = (ν(g⊗ p)◦ (−◦α))(u)

= (((−◦ (−◦α))◦ν)(g⊗ p))(u)

for all g ∈ PosT (P,T ), s ∈ S, f ∈ SPos(P,P), u ∈ SPos(S,P), the left hand square and the right hand square
in the diagram

PosT (P,T )⊗S P PosT (SPos(P,P),T )ν //

PosT (P,T )⊗S S PosT (SPos(S,P),T )
νS //

PosT (P,T )⊗S P

PosT (P,T )⊗S S

1⊗α

OO

PosT (P,T )⊗S P

PosT (P,T )⊗S S

²²

1⊗β

PosT (SPos(P,P),T )

PosT (SPos(S,P),T )

−◦(−◦α)

OO

PosT (SPos(P,P),T )

PosT (SPos(S,P),T )

²²

−◦(−◦β )

commute. The equality β ◦α = 1P implies (1⊗β )◦(1⊗α)= 1PosT (P,T )⊗P and (−◦(−◦β ))◦(−◦(−◦α))=
1PosT (SPos(P,P),T ). Then ν is a retraction in Pos, because

ν ◦ (1⊗β )◦ν−1
S ◦ (−◦ (−◦α)) = (−◦ (−◦β ))◦νS ◦ν−1

S ◦ (−◦ (−◦α)) = 1PosT (SPos(P,P),T ),

and similarly it is a coretraction. Therefore it is an isomorphism in T PosT . ¤
There is an isomorphism between the category SPosT and the category of contravariant Pos-functors

1→ PosT , where 1 is the category with one object ∗, 1(∗,∗) = S, and the composition in 1 is given by the
multiplication in S. The Pos-functor P : 1→ PosT corresponding to a biposet SPT is given by the assignment



230 Proceedings of the Estonian Academy of Sciences, 2011, 60, 4, 221–237

∗ PÂ //

∗

∗

s

²²

∗ PÂ // P

P

λs

²²

.

The following lemma is easy to verify.

Lemma 6. If a biposet SPT is Pos-prodense and SPT ∼= SQT in SPosT , then also SQT is Pos-prodense.

Theorem 5. For a biposet SPT ∈ SPosT , the following assertions are equivalent.
1. SPT is Pos-prodense.
2. SPT is faithfully balanced and SP,PT are cyclic projective generators.
3. There exists a biposet T P∗S ∈ T PosS such that

P⊗T P∗ ∼= S in SPosS,
P∗⊗S P∼= T in T PosT .

Proof. 1. ⇒ 2. Let SPT be Pos-prodense and consider the pomonoid homomorphism

λ : S→ PosT (P,P),s 7→ λs = P(s)

(see Proposition 3). This morphism is an isomorphism of posets (and hence an isomorphism of pomonoids,
but also an isomorphism in SPosS by the dual of Lemma 5) because the functor P is Pos-fully faithful by
Theorem 2.8(e) of [10]. Since the functor PosT (P,−) : PosT → PosS is faithful, PT is a generator in PosT .
Since PosT (P,−) preserves epimorphisms, PT is projective. Because PosT (P,−)(P) = PosT (P,P) ∼= SS ∈
PosS is a cyclic right S-poset, it is indecomposable, and hence also PT is indecomposable because PosT (P,−)
reflects coproducts (disjoint unions). Thus PT is an indecomposable projective generator and hence a cyclic
projective generator. By Lemma 2, SPT is faithfully balanced. By Proposition 4, SP is a cyclic projective.
By the dual of Proposition 4, SP is a generator.

2. ⇒ 3. Assume that SPT is faithfully balanced and SP,PT are cyclic projective generators. Then
T ∼= SPos(P,P) as pomonoids, but due to Lemma 5 also as (T,T )-biposets, and similarly S ∼= PosT (P,P)
in SPosS. Hence, for the biposet T P∗S := PosT (P,T ) ∈ T PosS we have isomorphisms

P∗⊗S P=PosT (P,T )⊗S P ∼=
Proposition 6

PosT (SPos(P,P),T ) ∼=
faithfully balanced

PosT (T,T ) ∼=
Lemma 3

T

in T PosT , and
P⊗T P∗ = P⊗T PosT (P,T ) ∼=

Proposition 5
PosT (P,P) ∼=

faithfully balanced
S

in SPosS.
3.⇒ 1. For P,P∗ consider the Pos-functors F =−⊗S P : PosS → PosT and G =−⊗T P∗ : PosT → PosS.

For every AS ∈ PosS,

(GF)(AS) = (A⊗S P)⊗T P∗ ∼= A⊗S (P⊗T P∗)∼= A⊗S S∼= A

in PosS and all these isomorphisms are natural in A. Hence GF ∼= 1PosS , and similarly FG ∼= 1PosT . Since
G is a Pos-equivalence, by Theorem 2(a) there exists a biposet SQ∗

T ∈ SPosT such that G ∼= PosT (Q∗,−).
By part (d) of the same theorem, −⊗S Q∗ is an inverse of −⊗T P∗ = G. Since also F is an inverse of G,
−⊗S Q∗∼= F =−⊗S P. By Lemma 4, Q∗∼= P in SPosT . Since G is a Pos-equivalence and G∼= PosT (Q∗,−),
SQ∗

T is Pos-prodense, and, by Lemma 6 so is SPT . ¤
From Corollary 1 and Theorem 5 we obtain the following result.
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Corollary 3. Pomonoids S and T are Morita equivalent if and only if there exist biposets SPT ∈ SPosT and
T QS ∈ T PosS such that

P⊗T Q∼= S in SPosS,

Q⊗S P∼= T in T PosT .

4. MORITA CONTEXTS

In this section we consider Morita contexts for pomonoids and prove Morita I.

Definition 4. A Morita context is a six-tuple (S,T, SPT ,T QS,θ ,φ), where S and T are pomonoids,
SPT ∈ SPosT , T QS ∈ T PosS, and

θ : S(P⊗T Q)S → SSS, φ : T (Q⊗S P)T → T TT

are biposet morphisms such that, for every p, p′ ∈ P and q,q′ ∈ Q,

θ(p⊗q) · p′ = p ·φ(q⊗ p′), q ·θ(p⊗q′) = φ(q⊗ p) ·q′.

Proposition 7. If (S,T, SPT ,T QS,θ ,φ) is a Morita context, then
1. the mapping

φ̂ : P→ T Pos(Q,T ), p 7→ φ(−⊗ p),

is a morphism in SPos and the mapping

φ : Q→ PosT (P,T ), q 7→ φ(q⊗−),

is a morphism in T Pos;
2. if θ is surjective, then

(a) θ is an isomorphism,
(b) PT and T Q are cyclic projectives,
(c) SP and QS are generators,
(d) φ̂ and φ are isomorphisms,
(e) λ : S→ End(PT ) and ρ : S→ End(T Q) are pomonoid isomorphisms.

Proof. Note that the left S-action on T Pos(Q,T ) is defined by (s · f )(q) = f (q · s) and the left T -action on
PosT (P,T ) is defined by (t ·g)(p) = tg(p) (see Lemma 3).

1. The mappings φ̂(p) = φ(−⊗ p) = φ ◦ (−⊗ p) : Q→ T and φ(q) = φ(q⊗−) = φ ◦ (q⊗−) : P→ T
are morphisms in T Pos and PosT , respectively, because the mapping −⊗ p : Q → Q⊗P is a morphism in
T Pos, q⊗− : P→ Q⊗P is a morphism in PosT , and φ is a morphism in T PosT . If p 6 p′, p, p′ ∈ P, then
−⊗ p 6−⊗ p′, and hence φ̂(p) 6 φ̂(p′), which means that φ̂ is order preserving. Analogously φ is order
preserving. For every s ∈ S, t ∈ T , p ∈ P, and q ∈ Q,

φ̂(s · p)(q) = φ(q⊗ s · p) = φ(q · s⊗ p) = φ(−⊗ p)(q · s) = (s · φ̂(p))(q),

φ(t ·q)(p) = φ(t ·q⊗ p) = tφ(q⊗ p) = t(φ(q)(p)) = (t ·φ(q))(p).

Thus φ̂ is a morphism in SPos and φ in T Pos.
2. Assume that θ is surjective and let 1 = θ(p1⊗q1), where p1 ∈ P, q1 ∈ Q.

(a) We need to prove that θ reflects order. Indeed, if θ(p⊗q) 6 θ(p′⊗q′), then

p⊗q = θ(p1⊗q1) · p⊗q = p1 ·φ(q1⊗ p)⊗q = p1⊗φ(q1⊗ p) ·q
= p1⊗q1 ·θ(p⊗q) 6 p1⊗q1 ·θ(p′⊗q′) = p1⊗φ(q1⊗ p′) ·q′

= p1 ·φ(q1⊗ p′)⊗q′ = θ(p1⊗q1) · p′⊗q′ = p′⊗q′.
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(b) For the morphisms lp1 : T → P and φ(q1⊗−) : P→ T in PosT we have

(lp1 ◦φ(q1⊗−))(p) = p1 ·φ(q1⊗ p) = θ(p1⊗q1) · p = p

for every p ∈ P. Thus PT is a retract of TT , that is, a cyclic projective by Proposition 1. For T Q
the proof is analogous.

(c) For every s = θ(p⊗q) ∈ S we can calculate

s = θ(p⊗q)θ(p1⊗q1) = θ(p⊗q ·θ(p1⊗q1)) = θ(p⊗φ(q⊗ p1) ·q1)

= θ(p ·φ(q⊗ p1)⊗q1) = θ(−⊗q1)(p ·φ(q⊗ p1)),

and hence the left S-poset homomorphism θ(−⊗q1) : SP→ SS is an epimorphism. Consequently,
SP (and, symmetrically, QS) is a generator by Theorem 1.

(d) We define a mapping ψ̂ : T Pos(Q,T )→ P by

ψ̂(h) := p1 ·h(q1).

Obviously, ψ̂ is order preserving. Note that, for every h ∈ T Pos(Q,T ) and q ∈ Q,

h(q) = h(q ·1) = h(q ·θ(p1⊗q1)) = h(φ(q⊗ p1) ·q1) = φ(q⊗ p1)h(q1).

Therefore,

ψ̂(s ·h) = p1((s ·h)(q1)) = p1 ·h(q1 · s) = p1 ·φ(q1 · s⊗ p1)h(q1)

= (p1 ·φ(q1 · s⊗ p1)) ·h(q1) = (θ(p1⊗q1)s · p1) ·h(q1)

= s · (p1 ·h(q1)) = s · ψ̂(h)

for every s ∈ S, i.e. ψ̂ is a morphism in SPos. Moreover, the equalities

(φ̂ ψ̂)(h)(q) = φ̂(p1 ·h(q1))(q) = φ(q⊗ p1 ·h(q1)) = φ(q⊗ p1)h(q1) = h(q),

(ψ̂φ̂)(p) = ψ̂(φ(−⊗ p)) = p1 ·φ(q1⊗ p) = θ(p1⊗q1) · p = p,

p ∈ P, q ∈ Q, h ∈ T Pos(Q,T ), prove that φ̂ and ψ̂ are mutually inverse isomorphisms in SPos.
The inverse ψ : PosT (P,T )→ Q of φ is defined by ψ(g) = g(p1) ·q1.

(e) By Proposition 3, the mapping λ : s 7→ λs : PT → PT is a pomonoid homomorphism. We define a
mapping µ : End(PT )→ S by

µ(h) := θ(h(p1)⊗q1).

Then µ(1P) = 1 and

µ(h1)µ(h2) = θ(h1(p1)⊗q1)θ(h2(p1)⊗q1) = θ(h1(p1)⊗q1 ·θ(h2(p1)⊗q1))

= θ(h1(p1)⊗φ(q1⊗h2(p1)) ·q1) = θ(h1(p1) ·φ(q1⊗h2(p1))⊗q1)

= θ(h1(p1 ·φ(q1⊗h2(p1)))⊗q1) = θ(h1(θ(p1⊗q1) ·h2(p1))⊗q1)

= θ(h1(h2(p1))⊗q1) = µ(h1 ◦h2)

for every h1,h2 ∈ End(PT ). Also µ is order preserving, and hence a homomorphism of
pomonoids. Finally,

(µλ )(s) = µ(λs) = θ(s · p1⊗q1) = sθ(p1⊗q1) = s,

(λ µ)(h)(p) = λθ(h(p1)⊗q1)(p) = θ(h(p1)⊗q1) · p = h(p1) ·φ(q1⊗ p)

= h(p1 ·φ(q1⊗ p)) = h(θ(p1⊗q1) · p) = h(p)
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for every s ∈ S, p ∈ P and h ∈ End(PT ), so λ and µ are isomorphisms. The proof for ρ is
analogous. ¤

Proposition 8. If PT ∈ PosT and S = End(PT ), then SPT ∈ SPosT . If P∗ = PosT (P,T ), then T P∗S ∈ T PosS.
Moreover,
1. there is a Morita context (S,T, SPT ,T P∗S ,θP,φP), where

θP(p⊗q) = p ·q(−) = lp ◦q and φP(q⊗ p) = q(p),

2. PT is a cyclic projective if and only if θP is surjective,
3. PT is a generator if and only if φP is surjective,
4. PT is a cyclic projective generator if and only if θP and φP are both surjective.

Proof. The required actions are defined by

s · p := s(p),
(t ·q)(p) := tq(p),
(q · s)(p) := q(s · p) = q(s(p)),

s ∈ End(PT ), p ∈ P, t ∈ T , q ∈ P∗ (see Lemma 3 for the actions on P∗).
1. For every p ∈ P and q ∈ PosT (P,T ), the composite lp ◦ q of two morphisms in PosT is an endo-

morphism of PT . Note that

(lp·t ◦q)(p′) = (p · t) ·q(p′) = p · (tq(p′)) = lp((t ·q)(p′)) = (lp ◦ (t ·q))(p′)

for every p, p′ ∈ P, t ∈ T , q ∈ P∗, so lp·t ◦q = lp ◦ (t ·q). If now p⊗q 6 p′⊗q′ in P⊗T P∗, i.e.

p 6 p1 · t1
p1 ·u1 6 p2 · t2 t1 ·q 6 u1 ·q2
p2 ·u2 6 p3 · t3 t2 ·q2 6 u2 ·q3

. . . . . .
pn ·un 6 p′ tn ·qn 6 un ·q′,

for some p1, . . . , pn ∈ P, q2, . . . ,qn ∈ P∗ and t1, . . . , tn,u1, . . . ,un ∈ T , then

lp ◦q 6 lp1·t1 ◦q = lp1 ◦ (t1 ·q) 6 lp1 ◦ (u1 ·q2) = lp1·u1 ◦q2 6 . . . 6 lpn·un ◦q′ 6 lp′ ◦q′.

Hence θP is well defined and order preserving.
If q⊗ p 6 q′⊗ p′ in P∗⊗S P, p, p′ ∈ P, q,q′ ∈ P∗, then we have inequalities

q 6 q1 · s1

q1 · z1 6 q2 · s2 s1 · p 6 z1 · p2

q2 · z2 6 q3 · s3 s2 · p2 6 z2 · p3
. . . . . .

qn · zn 6 q′ sn · pn 6 zn · p′

for some p2, . . . , pn ∈ P, q1, . . . ,qn ∈ P∗, s1, . . . ,sn,z1, . . . ,zn ∈ S, and hence

q(p) 6 (q1 · s1)(p) = q1(s1 · p) 6 q1(z1 · p2) = (q1 · z1)(p2) 6 (q2 · s2)(p2)

6 . . . 6 (qn · sn)(pn) = qn(sn · pn) 6 qn(zn · p′) = (qn · zn)(p′) 6 q′(p′).
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Therefore φP is well defined and order preserving. From

θP(s · p⊗q · s′)(p′) = (s · p) · ((q · s′)(p′)) = (s · p) · (q(s′(p′)))

= s · (p ·q(s′(p′))) = s(θP(p⊗q)(s′(p′)))

= (s◦θP(p⊗q)◦ s′)(p′),

φP(t ·q⊗ p · t ′) = (t ·q)(p · t ′) = tq(p · t ′) = tq(p)t ′ = tφP(q⊗ p)t ′,

s,s′ ∈ S, t, t ′ ∈ T , p, p′ ∈ P, q ∈ P∗, it follows that θP and φP are biposet morphisms. Also,

θP(p⊗q) · p′ = (p ·q(−)) · p′ = (p ·q(−))(p′) = p ·q(p′)

= p ·φP(q⊗ p′),

(q ·θP(p⊗q′))(p′) = q((p ·q′(−))(p′)) = q(p ·q′(p′)) = q(p)q′(p′)

= φP(q⊗ p)q′(p′) = (φP(q⊗ p) ·q′)(p′),

for all p, p′ ∈ P, q,q′ ∈ P∗.

2. Necessity. If PT is a cyclic projective, then by Proposition 1 there exist morphisms P
α //oo
β

T in PosT

such that β ◦α = 1P. Take any f ∈ End(PT ). Since

(lβ (1) ◦ (α ◦ f ))(p) = β (1) ·α( f (p)) = β (α( f (p))) = f (p)

for every p ∈ P, we have θP(β (1)⊗ (α ◦ f )) = lβ (1) ◦ (α ◦ f ) = f .
Sufficiency. If θP is surjective then there exist p∈P and q∈PosT (P,T ) such that 1P = θP(p⊗q) = lp◦q.

Thus PT is a cyclic projective by Proposition 1.

3. Necessity. If PT is a generator, then, by Theorem 1, there exist morphisms P
γ //oo
δ

T in PosT such that

γ ◦δ = 1T . Hence, for every t ∈ T , φP(γ⊗δ (t)) = γ(δ (t)) = t.
Sufficiency. If φP is surjective, then there exist p ∈ P, q ∈ PosT (P,T ) such that 1 = φP(q⊗ p) = q(p).

Hence (q◦ lp)(t) = q(p · t) = q(p) · t = t for every t ∈ T , that is, q◦ lp = 1T . By Theorem 1, PT is a generator.
4. This follows from 2 and 3. ¤

Theorem 6. Pomonoids S and T are Morita equivalent if and only if there exists a Morita context
(S,T, SPT ,T QS,θ ,φ) with θ and φ surjective.

Proof. Necessity follows from Proposition 8 and Theorem 3.
Sufficiency. Suppose that (S,T, SPT ,T QS,θ ,φ) is a Morita context with θ and φ surjective. Then,

by Proposition 7, PT is a cyclic projective. By the analogue of Proposition 7, PT is a generator and
λ : T → End(QS) is a pomonoid isomorphism. Hence S and T are Morita equivalent by Theorem 3. ¤
Theorem 7 (Morita I). Let PT be a cyclic projective generator, S = End(PT ) and T QS = PosT (P,T ). Then
1. −⊗T Q : PosT → PosS and −⊗S P : PosS → PosT are mutually inverse Pos-equivalence functors;
2. P⊗T − : T Pos→ SPos and Q⊗S− : SPos→ T Pos are mutually inverse Pos-equivalence functors.

Proof. 1. From Proposition 8 it follows that there exists a Morita context (S,T, SPT ,T QS,θP,φP) with θP
and φP surjective. By Proposition 7, SP is a generator, PT is a cyclic projective, and λ : S → End(PT ) is a
pomonoid isomorphism. By the analogue of Proposition 7, SP is a cyclic projective, PT is a generator, and
ρ : T → End(SP) is a pomonoid isomorphism. Hence SPT is Pos-prodense by Theorem 5, and the functor
G = PosT (P,−) : PosT → PosS is a Pos-equivalence. By Theorem 2(b) there exists a biposet T Q′

S such that
G∼=−⊗T Q′, but then T QS = G(T )∼= T Q′

S and G∼=−⊗T Q. By Theorem 2(d), −⊗S P : PosS → PosT is a
Pos-equivalence inverse to −⊗T Q.

2. This can be proven similarly. ¤



V. Laan: Morita theorems for partially ordered monoids 235

5. PICARD GROUPS

In this section we give a proof of Morita III for pomonoids.
Consider the category P , where

• objects are pomonoids,
• morphisms T // S are isomorphism classes [P] of Pos-prodense biposets SPT ∈ SPosT ,

• the composite of T
[P] // S

[X ] //U is defined by

[X ]◦ [P] := [U(X⊗S P)T ],

• the identity morphism of a pomonoid S is the isomorphism class [S] of the Pos-prodense biposet SSS.
To see that the composition is well defined, suppose that P ∼= P′ in SPosT and X ∼= X ′ in UPosS.

Then, since the functors X ⊗S− : SPosT → UPosT and −⊗S P′ : UPosS → UPosT preserve isomorphisms,
X ⊗P∼= X ⊗P′ ∼= X ′⊗P′ in UPosT . The fact that [S] is the identity morphism of an object S of P follows
from Lemma 1 and its dual. The composition is associative because the tensor multiplication of biposets is.

Let Pre be the category of preordered sets with preorder preserving mappings as morphisms.

Proposition 9. The category P is a Pre-groupoid.

Proof. By Theorem 5, P is a groupoid, where the inverse of a morphism [P] : T → S is [P∗] : S → T . We
write SPT E SP′T if there exists a regular monomorphism SPT → SP′T in SPosT , and we define a relation ≤ on
a mor-set P(S,T ) by

[P]≤ [P′]⇐⇒ SPT E SP′T .

Clearly this relation is well defined, reflexive, and transitive. Consider morphisms S
[P] //

[P′]
// T

[Q] //U in P

such that [P]≤ [P′]. Since U QT is Pos-prodense, QT is projective and hence po-flat in PosT (Theorem 3.23
of [11]). This means that the functor QT ⊗− : T Pos → Pos preserves regular monomorphisms, but then
also the functor U QT ⊗− : T PosS → UPos preserves regular monomorphisms, in particular U(Q⊗T P)S E
U(Q⊗T P′)S. Consequently,

[Q]◦ [P] = [Q⊗P]≤ [Q⊗P′] = [Q]◦ [P′]

and the preorder ≤ is compatible with the composition from the left. Similarly it is compatible with the
composition from the right and therefore P is a Pre-category. ¤

Corollary 4. The endomorphism monoid P(S,S) of a pomonoid S in P is a group.

Definition 5. We denote the group P(S,S) by Pic(S) and call it the Picard group of a pomonoid S.

Corollary 5. Picard groups of Morita equivalent pomonoids are isomorphic.

Proof. Due to Corollary 1, two pomonoids are Morita equivalent if and only if they are isomorphic objects
in P . Endomorphism monoids of isomorphic objects of a category are isomorphic. ¤

Consider the category M , where
• objects are the categories PosS, where S is a pomonoid,
• morphisms PosS //PosT are isomorphism classes [F ] of Pos-equivalence functors F : PosS //PosT ,
• the composition is given by the composition of functors.

Theorem 8 (Morita III). The categories M and P are dually isomorphic.
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Proof. We define contravariant functors M
K //oo
L

P by the assignments

PosT TÂ //

PosS

PosT

[F]

²²

PosS SÂ // S

T

OO

[SF(S)T ]

T PosT
Â //

S

T

OO

[SPT ]

S PosS
Â // PosS

PosT

[−⊗SP]

²²

,

respectively. Let F : PosS → PosT and G : PosT → PosU be Pos-equivalence functors. By Theorem 2,
G∼=−⊗T G(T ), so SG(F(S))U ∼= S(F(S)⊗T G(T ))U and

K([G]◦ [F ]) = K([G◦F ]) = [SG(F(S))U ] = [S(F(S)⊗T G(T ))U ]

= [SF(S)T ]◦ [T G(T )U ] = K([F ])◦K([G]).

If SPT ∈ SPosT and U XS ∈ UPosS, then

L([U XS]◦ [SPT ]) = L([U(X⊗S P)T ]) = [−⊗U (X⊗S P)]

= [(−⊗S P)◦ (−⊗U X)] = [−⊗S P]◦ [−⊗U X ]

= L([SPT ])◦L([U XS]).

It is easy to see that K and L preserve identities. Moreover, by Lemma 1 and Theorem 2,

(KL)([SPT ]) = K([−⊗S P]) = [S(S⊗P)T ] = [SPT ],

(LK)([F ]) = L([SF(S)T ]) = [−⊗S F(S)] = [F ]. ¤

Remark 2. Let us write F E F ′ if there is a regular monomorphism µ : F → F ′ in the category of Pos-
functors from PosS to PosT , and define

[F ]≤ [F ′]⇐⇒ F EF ′.

This way M becomes a Pre-category.
By Theorem 3, two pomonoids S and T are Morita equivalent if and only if the full subcategories

CPGS and CPGT of PosS and PosT generated by the cyclic projective generators are Pos-equivalent. Let us
consider the Pre-category M , where objects are categories CPGS (S is a pomonoid), morphisms of M are
the isomorphism classes of Pos-equivalence functors between them, and a preorder of morphisms is defined
as above. Then the functors

M
K //oo
L

P

that are defined similarly to K and L are mutually inverse isomorphisms. Moreover, K and L are Pre-
functors (and hence M and P are isomorphic as Pre-categories). Indeed, if [F ] ≤ [F ′], then K([F ]) =
[SF(S)T ] 6 [SF ′(S)T ] = K([F ′]). If [SPT ] ≤ [SP′T ], then there is a regular monomorphism m : P → P′
in SPosT . Therefore L([SPT ]) = [−⊗S P] 6 [−⊗S P′] = L([SP′T ]), where −⊗S P E−⊗S P′ because
µ = (µA)A∈CPGS :−⊗S P→−⊗S P′ with

µA = 1A⊗m : (A⊗S P)T // (A⊗S P′)T , a⊗ p 7→ a⊗m(p′),

is a regular monomorphism in PosT , because the cyclic projective generator AS is po-flat.
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Morita-teoreemid osaliselt järjestatud monoidide jaoks

Valdis Laan

Osaliselt järjestatud monoide S ja T nimetatakse Morita-ekvivalentseteks, kui parempoolsete järjestatud S-
polügoonide kategooria ning parempoolsete järjestatud T -polügoonide kategooria on ekvivalentsed kui üle
osaliselt järjestatud hulkade kategooria Pos rikastatud kategooriad. Me anname Pos-protihedate bipolügoo-
nide (üle osaliselt järjestatud monoidide) kirjelduse ja tõestame Morita-teoreemid I, II ja III.


