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Finding a class of 2-groups
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Abstract. Let n ≥ 3 be an integer and Cm denote a cyclic group of order m. All groups which can be presented as a semidirect
products (C2n ×C2n)hC4 are described. These groups are given by generators and defining relations.
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1. INTRODUCTION

All non-Abelian groups of order < 32 are described in [1] (see table 1 at the end of the book). These groups
are characterized by their endomorphism semigroups in [7–9]. Our aim is to describe the groups of order
32 by their endomorphism semigroups and to generalize the obtained results for some other classes of finite
2-groups. Hall and Senior [6] gave a full description of all groups of order 2n, n≤ 6. There exist exactly 51
non-isomorphic groups of order 32. Some of them can be presented as a semidirect product (C22×C22)hC2
and some of them in the form (C23 ×C2)hC2. In [3] and [5] it is proved that all groups in these forms are
determined by their endomorphism semigroups in the class of all groups. As a generalization of the case
of groups which can be presented as a semidirect product (C22 ×C22) hC2, in [4] all groups of the form
(C2n×C2n)hC2, n > 3, are described. It turned out that for a fixed n≥ 3 there exist only 17 non-isomorphic
groups of this form. As a generalization of the second case, i.e., of groups which can be presented as
a semidirect product (C23 ×C2) hC2, in [2] all groups of the form (C2n+m ×C2n) hC2, n > 3,m > 1, are
described by their defining relations.

In this paper we find all groups of order 22(n+1) (n > 3) which can be presented in the form G =
(C2n ×C2n)hC4, i.e.,

G =
〈

a,b,c | a2n
= b2n

= c4 = 1, ab = ba, c−1ac = apbq, c−1bc = arbs
〉

for some p, q, r, s ∈ Z2n (Z2n is the ring of residue classes modulo 2n). An element c generates an inner
automorphism ĉ for which ĉ 4 = 1:

aĉ = c−1ac = apbq, bĉ = c−1bc = arbs.

In order to find all groups in the given form, we have to find all automorphisms ϕ of the group C2n ×C2n for
which ϕ4 = 1.
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2. PRELIMINARIES

The group C2n ×C2n is given by defining relations as follows:

C2n ×C2n = 〈a,b | a2n
= b2n

= 1, ab = ba〉.

It is clear that the map

ϕ : C2n ×C2n −→C2n ×C2n , aϕ = apbq, bϕ = arbs, (1)

where p, q, r, s ∈ Z2n , preserves the defining relations of the group C2n ×C2n and is an endomorphism of
this group. Endomorphism (1) is an automorphism of C2n ×C2n satisfying the equation ϕ4 = 1 if and only
if (p, q, r, s) is a solution of the next system modulo 2n:

{ (
p2 + rq

)2 +qr (p+ s)2 ≡ 1, q(p+ s)
(

p2 +2qr + s2
)≡ 0,

r (p+ s)
(

p2 +2qr + s2
)≡ 0,

(
s2 + rq

)2 +qr (p+ s)2 ≡ 1.
(2)

Endomorphism (1) is an automorphism of order 1 or 2 if and only if (p, q, r, s) satisfies the next system
modulo 2n: {

p2 + rq≡ 1, p2− s2 ≡ 0,
q(p+ s)≡ r(p+ s)≡ 0.

(3)

If (p, q, r, s) satisfies system (2), then p ≡ s(mod2). Assuming that p ≡ s(mod2), it is easy to check
that system (2) is equivalent to the system

{ (
p2 + rq

)2 ≡ 1 (mod 2n) ,
q(p+ s)≡ 0, r (p+ s)≡ 0, (p− s)(p+ s)≡ 0

(
mod 2n−1

)
.

(4)

3. SOLUTIONS OF SYSTEM (4)

In this section all ϕ ∈ Aut(C2n ×C2n) satisfying ϕ4 = 1 will be found (n ≥ 3). For this purpose we have
to solve system (4) under the assumption p ≡ s(mod2). This assumption and the first equivalence of (4)
imply that we have to study the following three cases: 1) p and s are even (p, s ∈ 2Z2n−1), which implies
that q, r ∈ Z∗2n ; 2) p and s are odd (p, s ∈ Z∗2n , where Z∗2n denotes the group of invertible elements of the ring
Z2n), one of the numbers q and r is odd; 3) p and s are odd, q and r are even (p, s ∈ Z∗2n ; q, r ∈ 2Z2n−1).

Proposition 1. Let p, s ∈ 2Z2n−1 and q, r ∈ Z∗2n . Then map (1) is an automorphism of order 1, 2 or 4 of the
group C2n ×C2n if and only if

s =−p+2n−1x, x ∈ Z2; q ∈ Z∗2n ; r = (t− p2)q−1, t ∈ {±1, ±1+2n−1} .

The number of those automorphisms is 22n+1.
The obtained automorphism is 1 or has order 2 if and only if t = 1 and x = 0. The number of those

automorphisms is 22n−2.

Proof. Assume that p, s ∈ 2Z2n−1 and q, r ∈ Z∗2n . Denote t = p2 + rq. Then system (4) is satisfied if and only
if

q ∈ Z∗2n , s =−p+2n−1x, x ∈ Z2, r = (t− p2)q−1, t ∈ {±1, ±1+2n−1} .

The obtained automorphism is 1 or has order 2, i.e., satisfies system (3), if and only if t = 1 and x = 0.
Hence we get immediately the statements of Proposition 1. ¤
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Proposition 2. Let p, s ∈ Z∗2n ; q, r ∈ Z2n and q ∈ Z∗2n or r ∈ Z∗2n . Then map (1) is an automorphism of
order 1, 2 or 4 of the group C2n ×C2n if and only if s =−p+2n−1x, x ∈ Z2 and 1) q ∈ Z∗2n , r = (t− p2)q−1,
2) r ∈ Z∗2n , q = (t− p2)r−1, where t ∈ {±1,±1+2n−1}. The number of those automorphisms is 22n+2.

The obtained automorphism is 1 or has order 2 if and only if t = 1 and x = 0. The number of those
automorphisms is 22n−1.

Proof. Assume that p, s and one of the numbers q, r are odd. Denote t = p2 +rq. Then system (4) is satisfied
if and only if

s =−p+2n−1x, x ∈ Z2, t ∈ {±1, ±1+2n−1},
i.e., if rq∈ {±1− p2, ±1+2n−1− p2}. The obtained automorphism is 1 or has order 2, i.e., satisfies system
(3), if and only if t = 1 and x = 0. Hence we get immediately the statements of Proposition 2. ¤

We have now to consider the last case: p, s ∈ Z∗2n ; q, r ∈ 2Z2n−1 . For the discussion of this case we will
separate the cases n = 3 and n≥ 4. In the case n = 3 we get by easy calculations the following result.

Proposition 3. Let n = 3 and p, s ∈ Z∗8, q, r ∈ 2Z4. Then map (1) is always an automorphism of order 1, 2
or 4 of the group C8×C8. The number of such automorphisms is 28 = 256.

The obtained automorphism is 1 or has order 2 in the following three cases: 1) r, q ∈ 4Z2; 2) s =
−p + 4z, z ∈ Z2, r ∈ 4Z2, q ∈ 2Z∗4; 3) s = −p + 4z, z ∈ Z2, r ∈ 2Z∗4, q ∈ 4Z2. The number of those
automorphisms is 27 = 128.

Assume always in the following part of this section that n≥ 4 and p, s ∈ Z∗2n ; q, r ∈ 2Z2n−1 , i.e.,

r = 2 f u, q = 2gv, u ∈ Z∗2n− f , v ∈ Z∗2n−g , 1≤ f , g≤ n. (5)

Lemma 1. Let n ≥ 4. The triple p, q, r (where p ∈ Z∗2n and q, r ∈ 2Z2n−1 are given by (5)) satisfies the
congruence (p2 + rq)2 ≡ 1(mod 2n) only in the following cases:
a) p =±1+2n−2x, x ∈ Z4, if f +g≥ n−1 (the number of triples p,q,r of this form is (n−1)2n+3);
b) p = ε + 2 f +g−1x, v = (2n− f−g−1t − x(ε + 2 f +g−2x))u−1+2n− f−g−1

+ 2n− f−gk, where ε = ±1, x ∈
Z∗2n− f−g+1 , k ∈ Z2 f , t ∈ Z2, if 3 ≤ f + g < n− 1 (the number of triples p, q, r of this form is
2n+3

(
3 ·2n−4−n+1

)
).

Proof. Assume that f +g≥ n−1. Then

(p2 + rq)2 = (p2 +2 f +guv)2 = p4 +2 f +g+1 p2uv+22( f +g)u2v2 ≡ p4 (mod2n)

and the congruence (p2 + rq)2 ≡ 1(mod2n) is equivalent to the congruence p4 ≡ 1(mod2n). The solutions
of the last congruence are p =±1+2n−2x, x ∈ Z4, i.e., statement a) is true.

Assume now that f +g < n−1 and let us find the solutions of the congruence (p2 + rq)2 ≡ 1(mod2n).
Clearly, p2 + rq = ±1 + 2n−1t, p2 = ±1 + 2n−1t− 2 f+guv, where t ∈ Z2. Since p2 ≡ 1(mod8), we have
f +g≥ 3 and

p2 = 1+2n−1t−2 f +guv, t ∈ Z2. (6)

The congruence p2 + rq ≡ 1(mod2n) was solved in [4]. Using the same technique, we obtain all solutions
of equation (6). The result is given as statement b) of Lemma 1. ¤

Proposition 4. Let p, s ∈ Z∗2n , n ≥ 4, and the pair q, r be given by (5). Then map (1) is an automorphism
of order 1, 2 or 4 of the group C2n ×C2n if and only if one of the following three conditions holds:

I) f , g≥ n−2, s = p−2n−2z, z ∈ Z4 and the triple p, q, r is given by item a) of Lemma 1;
II) s =−p+2n−2z, z ∈ Z∗4 and the triple p, q, r is given by item a) or b) of Lemma 1;

III) s =−p+2n−1z, z ∈ Z2 and the triple p, q, r is given by item a) or b) of Lemma 1.
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The number of these automorphisms is 3 ·22n+1 +29.
The automorphisms obtained in case II) have always order 4. In cases I) and III) an obtained

automorphism has order 1 or 2 if and only if, respectively,
I) x ∈ 2Z2, z ∈ 2Z2, f ,g≥ n−1;

IIIa) x ∈ 2Z2, f +g≥ n or x ∈ Z∗4, f +g = n−1;
IIIb) t = 0.
The number of obtained automorphisms of orders 1 and 2 is 3 ·22n−1 +32.

Proof. It is necessary to solve system (4) under the assumptions made in Proposition 4. Solutions p, q, r of
the first congruence of (4) were found in Lemma 1. Let us find among them those that satisfy also the last
three congruences of (4). We separate the cases p+ s 6≡ 0(mod2n−1) and p+ s≡ 0(mod2n−1).

Assume that p+ s 6≡ 0(mod2n−1), i.e.,

p+ s = 2mk, 1≤ m < n−1, k ∈ Z∗2n−m .

The last three congruences of (4) imply that

m≥ n− f −1, m≥ n−g−1, p− s≡ 0(mod2n−m−1).

Therefore, for p− s we have two cases: i) p− s = 2n−m−1w for some w ∈ Z∗2m+1 and ii) p− s = 2n−1w for
some w ∈ Z2. In case i) we have that 2p = (p+ s)+(p− s) = 2mk +2n−m−1w and

p = 2m−1k +2n−m−2w. (7)

Since p is odd, equality (7) is possible if m = n−2 or m = 1. If n = m−2, then

p = 2n−3k +w, p− s = 2w, s = p−2w = p−2(p−2n−3k) =−p+2n−2k,

which corresponds to case II) of Proposition 4. If m = 1, then we obtain f , g≥ n−2, p = k +2n−3w, and

s =−p+2k =−p+2(p−2n−3w) = p−2n−2w, where w ∈ Z∗4.
Analogously, in case ii) we obtain also m = 1, f , g≥ n−2 and s = p−2n−1w. So we get s = p−2n−2w for
some w ∈ Z4, which corresponds to case I) of Proposition 4.

In the case p + s ≡ 0(mod2n−1) the last three congruences of (4) hold and we get case III) of
Proposition 4.

After finding from the set of solutions of (4) those that satisfy system (3), we get all automorphisms
of order 1 or 2 of the group C2n ×C2n . The result is formulated in the proposition. The statements on
the numbers of automorphisms follow after easy calculations by using the values of the corresponding
parameters. ¤

4. MAIN RESULT

We summarize the results obtained in previous sections in the following theorem.

Theorem 1. Assume that n ≥ 3. For each automorphism ϕ of the group C2n ×C2n for which ϕ4 = 1 the
group

Gϕ = 〈a, b, c | a2n
= b2n

= c4 = 1, ab = ba, c−1ac = aϕ, c−1bc = bϕ〉
is isomorphic to a semidirect product (C2n×C2n)hC4. Conversely, each semidirect product (C2n×C2n)hC4
is isomorphic to a group Gϕ for some ϕ ∈ Aut(C2n ×C2n), ϕ4 = 1. All these automorphisms are described
in Propositions 1–4.

Remark. If ϕ 6= ψ , then it is possible that the groups Gϕ and Gψ are isomorphic. We will find all non-
isomorphic groups among these groups in some of our next papers.
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Ühe 2-rühmade klassi leidmine

Tatjana Tamberg

On jätkatud mõningate 2-rühmade klasside kirjeldamist moodustajate ja määravate seoste abil. On leitud
kõik 2-rühmad, mis on esitatavad kujul G = (C2n ×C2n)hC4. Selleks on leitud selle rühma normaaljagaja
C2n ×C2n kõik ülimalt neljandat järku automorfismid. Osutub, et on olemas 640 (kui n = 3), 12·4n + 512
(kui n > 4) rühma, mis on esitatavad antud kujul. Leitud 2-rühmade omavahelise isomorfsuse küsimust siin
uuritud ei ole.


