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Abstract. In order to simultaneously generalize matrix rings and group graded crossed products, we introduce category crossed
products. For such algebras we describe the centre and the commutant of the coefficient ring. We also investigate the connection
between on the one hand maximal commutativity of the coefficient ring and on the other hand nonemptiness of intersections of the
coefficient ring by nonzero two-sided ideals.
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1. INTRODUCTION

Let R be a ring. By this we always mean that R is an additive group equipped with a multiplication which
is associative and unital. The identity element of R is denoted 1R and the set of ring endomorphisms of R
is denoted End(R). We always assume that ring homomorphisms respect the multiplicative identities. The
centre of R is denoted Z(R) and by the commutant of a subset of R we mean the collection of elements in R
that commute with all the elements in the subset.

Suppose that R1 is a subring of R, i.e. there is an injective ring homomorphism R1 → R. Recall that if
R1 is commutative, then it is called a maximal commutative subring of R if it coincides with its commutant
in R. A lot of work has been devoted to investigating the connection between on the one hand maximal
commutativity of R1 in R and on the other hand nonemptiness of intersections of R1 with nonzero two-
sided ideals of R (see [2,3,5,6,9–11,16]). Recently (see [18–22]) such a connection was established for the
commutant R1 of the coefficient ring of crossed products R (see Theorem 1 below). Recall that crossed
products are defined by first specifying a crossed system, i.e. a quadruple {A,G,σ ,α} where A is a ring, G
is a group (written multiplicatively and with identity element e) and σ : G→ End(A) and α : G×G→ A are
maps satisfying the following four conditions:

σe = idA, (1)

α(s,e) = α(e,s) = 1A, (2)

α(s, t)α(st,r) = σs(α(t,r))α(s, tr), (3)
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σs(σt(a))α(s, t) = α(s, t)σst(a) (4)

for all s, t,r ∈ G and all a ∈ A. The crossed product, denoted Aoσ
α G, associated to this quadruple, is the

collection of formal sums ∑s∈G asus, where as ∈ A, s ∈ G, are chosen so that all but finitely many of them
are zero. By abuse of notation we write us instead of 1Aus for all s ∈ G. The addition on Aoσ

α G is defined
pointwise

∑
s∈G

asus + ∑
s∈G

bsus = ∑
s∈G

(as +bs)us (5)

and the multiplication on Aoσ
α G is defined by the bilinear extension of the relation

(asus)(btut) = asσs(bt)α(s, t)ust (6)

for all s, t ∈ G and all as,bt ∈ A. By (1) and (2) ue is a multiplicative identity of Aoσ
α G and by (3) the

multiplication on Aoσ
α G is associative. There is also an A-bimodule structure on Aoσ

α G defined by the
linear extension of the relations a(bus) = (ab)us and (aus)b = (aσs(b))us for all a,b ∈ A and all s, t ∈ G,
which, by (4), makes Aoσ

α G an A-algebra. In the article [18], the first author and Silvestrov show the
following result.

Theorem 1. If Aoσ
α G is a crossed product with A commutative, all σs, s ∈ G, are ring automorphisms and

all α(s,s−1), s ∈ G, are units in A, then every intersection of a nonzero two-sided ideal of Aoσ
α G with the

commutant of A in Aoσ
α G is nonzero.

In [18] the first author and Silvestrov determine the centre of crossed products and in particular when
crossed products are commutative; they also give a description of the commutant of A in Aoσ

α G. Theorem 1
has been generalized somewhat by relaxing the conditions on σ and α (see [20,21]) and by considering
general strongly group graded rings (see [22]). For more details concerning group graded rings in general
and crossed product algebras in particular, see e.g. [1,7,17].

Many natural examples of rings, such as rings of matrices, crossed product algebras defined by separable
extensions and category rings, are not in any natural way graded by groups, but instead by categories
(see [12–14] and Remark 1). The purpose of this article is to define a category graded generalization
of crossed products and to analyse commutativity questions similar to the ones discussed above for such
algebras. In particular, we wish to generalize Theorem 1 from groups to groupoids (see Theorem 2 in
Section 4). To be more precise, suppose that G is a category. The family of objects of G is denoted ob(G);
we will often identify an object in G with its associated identity morphism. The family of morphisms in
G is denoted mor(G); by abuse of notation, we will often write s ∈ G when we mean s ∈ mor(G). The
domain and codomain of a morphism s in G are denoted d(s) and c(s) respectively. We let G(2) denote the
collection of composable pairs of morphisms in G, i.e. all (s, t) in mor(G)×mor(G) satisfying d(s) = c(t).
Analogously, we let G(3) denote the collection of all composable triples of morphisms in G, i.e. all (s, t,r)
in mor(G)×mor(G)×mor(G) satisfying (s, t) ∈G(2) and (t,r) ∈G(2). Throughout the article G is assumed
to be small, i.e. with the property that mor(G) is a set. A category is called a groupoid1 if all its morphisms
are invertible. By a crossed system we mean a quadruple {A,G,σ ,α} where A is the direct sum of rings
Ae, e ∈ ob(G), σs : Ad(s) → Ac(s), for s ∈ G, are ring homomorphisms and α is a map from G(2) to the
disjoint union of the sets Ae, for e∈ ob(G), with α(s, t)∈ Ac(s), for (s, t)∈G(2), satisfying the following five
conditions:

σe = idAe , (7)

α(s,d(s)) = 1Ac(s) , (8)

α(c(t), t) = 1Ac(t) , (9)

α(s, t)α(st,r) = σs(α(t,r))α(s, tr), (10)

1 The term groupoid has various meanings in the literature, e.g. in [8], a set with a binary operation is referred to as a groupoid.



340 Proceedings of the Estonian Academy of Sciences, 2010, 59, 4, 338–346

σs(σt(a))α(s, t) = α(s, t)σst(a) (11)

for all e ∈ ob(G), all (s, t,r) ∈ G(3) and all a ∈ Ad(t). Let Aoσ
α G denote the collection of formal sums

∑s∈G asus, where as ∈ Ac(s), s ∈G, are chosen so that all but finitely many of them are zero. Define addition
on Aoσ

α G by (5) and define multiplication on Aoσ
α G by (6) if (s, t) ∈ G(2) and (asus)(btut) = 0 otherwise

where as ∈ Ac(s) and bt ∈ Ac(t). By (7), (8), and (9) it follows that Aoσ
α G has a multiplicative identity if

and only if ob(G) is finite; in that case the multiplicative identity is ∑e∈ob(G) ue. By (10) the multiplication
on Aoσ

α G is associative. Define a left A-module structure on Aoσ
α G by the bilinear extension of the

rule ae(bsus) = (aebs)us if e = c(s) and ae(bsus) = 0 otherwise for all ae ∈ Ae, bs ∈ Ac(s), e ∈ ob(G),
s ∈ G. Analogously, define a right A-module structure on Aoσ

α G by the bilinear extension of the rule
(bsus)c f = (bsσs(c f ))us if f = d(s) and (bsus)c f = 0 otherwise for all bs ∈ Ac(s), c f ∈ A f , f ∈ ob(G), s ∈G.
By (11) this A-bimodule structure makes Aoσ

α G an A-algebra. We will often identify A with
⊕

e∈ob(G) Aeue;
this ring will be referred to as the coefficient ring of Aoσ

α G. It is clear that Aoσ
α G is a category graded ring

in the sense defined in [13] and it is strongly graded if and only if each α(s, t), (s, t)∈G(2), has a left inverse
in Ac(s). We call Aoσ

α G the category crossed product algebra associated to the crossed system {A,G,σ ,α}.
In Section 2, we determine the centre of category crossed products. In particular, we determine when

category crossed products are commutative. In Section 3, we describe the commutant of the coefficient ring
in category crossed products. In Section 4, we investigate the connection between on the one hand maximal
commutativity of the coefficient ring and on the other hand nonemptiness of intersections of the coefficient
ring by nonzero two-sided ideals. At the end of each section, we indicate how our results generalize earlier
results for other algebraic structures such as group crossed products and matrix rings (see Remarks 1–6 and
Remark 8).

2. THE CENTRE

For the rest of the article, unless otherwise stated, we suppose that Aoσ
α G is a category crossed product. We

say that α is symmetric if α(s, t) = α(t,s) for all s, t ∈G with d(s) = c(s) = d(t) = c(t). We say that Aoσ
α G

is a monoid (groupoid, group) crossed product if G is a monoid (groupoid, group). We say that Aoσ
α G is a

twisted category (monoid, groupoid, group) algebra if each σs, s ∈ G, with d(s) = c(s) equals the identity
map on Ad(s) = Ac(s); in that case the category (monoid, groupoid, group) crossed product is denoted Aoα G.
We say that Aoσ

α G is a skew category (monoid, groupoid, group) algebra if α(s, t) = 1Ac(s) , for (s, t) ∈G(2);
in that case the category (monoid, groupoid, group) crossed product is denoted Aoσ G. If G is a monoid,
then we let AG denote the set of elements in A fixed by all σs, s ∈ G. We say that G is cancellable if any
equality of the form s1t1 = s2t2, when (si, ti) ∈ G(2), for i = 1,2, implies that s1 = s2 (or t1 = t2) whenever
t1 = t2 (or s1 = s2). For e, f ∈ ob(G) we let G f ,e denote the collection of s ∈ G with c(s) = f and d(s) = e;
we let Ge denote the monoid Ge,e. We let the restriction of α (or σ ) to G2

e (or Ge) be denoted by αe (or σe).
With this notation all Aeoσe

αe Ge, for e ∈ ob(G), are monoid crossed products.

Proposition 1. The centre of a monoid crossed product Aoσ
α G is the collection of ∑s∈G asus in Aoσ

α G
satisfying the following two conditions: (i) asσs(a) = aas, for s ∈ G and a ∈ A; (ii) for all t,r ∈ G the
following equality holds ∑ s∈G

st=r
asα(s, t) = ∑ s∈G

ts=r
σt(as)α(t,s).

Proof. Let e denote the identity element of G. Take x := ∑s∈G asus in the centre of Aoσ
α G. Condition (i)

follows from the fact that xaue = auex for all a ∈ A. Condition (ii) follows from the fact that xut = utx for all
t ∈G. Conversely, it is clear that conditions (i) and (ii) are sufficient for x to be in the centre of Aoσ

α G.

Corollary 1. The centre of a twisted monoid ring Aoα G is the collection of ∑s∈G asus in Aoα G satisfying
the following two conditions: (i) as ∈ Z(A), for s ∈ G; (ii) for all t,r ∈ G, the following equality holds
∑ s∈G

st=r
asα(s, t) = ∑ s∈G

ts=r
asα(t,s).

Proof. This follows immediately from Proposition 1.
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Corollary 2. If G is an abelian cancellable monoid, α is symmetric and has the property that none of the
α(s, t), for (s, t) ∈ G(2), is a zero-divisor, then the centre of Aoσ

α G is the collection of ∑s∈G asus in Aoσ
α G

satisfying the following two conditions: (i) asσs(a) = aas, for s ∈ G and a ∈ A; (ii) as ∈ AG, for s ∈ G. In
particular, if Aoσ G is a skew monoid ring where G is abelian and cancellable, then the same description
of the centre is valid.

Proof. Take x := ∑s∈G asus in Aoσ
α G. Suppose that x belongs to the centre of Aoσ

α G. Condition (i) follows
from the first part of Proposition 1. Now we show condition (ii). Take s, t ∈ G and let r = st. Since G
is commutative and cancellable, we get, by the second part of Proposition 1, that asα(s, t) = σt(as)α(t,s).
Since α is symmetric and α(s, t) is not a zero-divisor, this implies that as = σt(as). Since s and t were
arbitrarily chosen from G, this implies that as ∈ AG, for s ∈ G. On the other hand, by Proposition 1, it is
clear that (i) and (ii) are sufficient conditions for x to be in the centre of Aoσ

α G. The second part of the
claim is obvious.

Now we show that the centre of a category crossed product is a particular subring of the direct sum of
the centres of the corresponding monoid crossed products.

Proposition 2. The centre of a category crossed product Aoσ
α G equals the collection of ∑e∈ob(G) ∑s∈Ge asus

in ∑e∈ob(G) Z(Aeoσe
αe Ge) satisfying ∑ s∈Ge

rs=g
σr(as)α(r,s) = ∑ t∈G f

tr=g
atα(t,r) for all e, f ∈ ob(G) with e 6= f , and

all r,g ∈ G f ,e.

Proof. Take x := ∑s∈G asus in the centre of Aoσ
α G. By the equalities uex = xue, for e ∈ ob(G), it

follows that as = 0 for all s ∈ G with d(s) 6= c(s). Therefore we can write x = ∑e∈ob(G) ∑s∈Ge asus where
∑s∈Ge asus ∈ Z(Aeoσe

αe Ge), for e ∈ ob(G). The last part of the claim follows from the fact that the equality
ur

(
∑s∈Ge asus

)
=

(
∑s∈Ge asus

)
ur holds for all e, f ∈ ob(G), all e 6= f , and all r ∈ G f ,e.

Proposition 3. Suppose that Aoσ
α G is a category crossed product and consider the following six conditions:

(0) all α(s, t), for (s, t) ∈ G(2), are nonzero; (i) Aoσ
α G is commutative; (ii) G is the disjoint union of the

monoids Ge, for e ∈ ob(G), and they are all abelian; (iii) each Aeoσe
αe Ge, for e ∈ ob(G), is a twisted monoid

algebra; (iv) A is commutative; (v) α is symmetric. Then (a) conditions (0) and (i) imply conditions (ii)–(v);
(b) conditions (ii)–(v) imply condition (i).

Proof. (a) Suppose that conditions (0) and (i) hold. By Proposition 2, we get that G is the direct sum of Ge,
for e ∈ ob(G), and that each Aeoσe

αe Ge, for e ∈ ob(G), is commutative. The latter and Proposition 1(i) imply
that (iii) holds. Corollary 1 now implies that (iv) holds. For the rest of the proof we can suppose that G is a
monoid. Take s, t ∈ G. By the commutativity of Aoσ

α G we get that α(s, t)ust = usut = utus = α(t,s)uts for
all s, t ∈ G. Since α is nonzero this implies that st = ts and that α(s, t) = α(t,s) for all s, t ∈ G. Therefore,
G is abelian and (v) holds.

Conversely, by Corollary 1 and Corollary 2 we get that conditions (ii)–(iv) are sufficient for
commutativity of Aoσ

α G.

Remark 1. Proposition 2, Corollary 1, Corollary 2, and Proposition 3 generalize Proposition 3 and
Corollaries 1–4 in [18] from groups to categories.

Remark 2. Let AoG be a category algebra where all the rings Ae, for e ∈ ob(G), coincide with a fixed ring
D. Then AoG is the usual category algebra DG of G over D. Let H denote the disjoint union of the monoids
Ge, for e ∈ ob(G). By Proposition 1 and Proposition 2 the centre of DG is the collection of ∑s∈H asus, for
as ∈ Z(D), and s ∈ H, in the induced category algebra Z(D)H satisfying ∑ s∈H

st=r
as = ∑ s∈H

ts=r
as for all r, t ∈ G.

Note that if G is a groupoid, then the last condition simplifies to art−1 = at−1r for all r, t ∈G with c(r) = c(t)
and d(r) = d(t). This result specializes to two well-known cases. First of all, if G is a group, then we
retrieve the usual description of the centre of a group ring (see e.g. [23]). Secondly, if G is the groupoid with
the n first positive integers as objects and as arrows all pairs (i, j), for 1≤ i, j ≤ n, equipped with the partial
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binary operation defined by letting (i, j)(k, l) be defined and equal to (i, l) precisely when j = k, then DG
is the ring of square matrices over D of size n and we retrieve the result that Z(Mn(D)) equals the Z(D)1n
where 1n is the unit n×n matrix.

Remark 3. Let L/K be a finite separable (not necessarily normal) field extension. Let N denote a normal
closure of L/K and let Gal(N/K) denote the Galois group of N/K. Furthermore, let L = L1,L2, . . . ,Ln
denote the different conjugate fields of L under the action of Gal(N/K) and put F =

⊕n
i=1 Li. If 1≤ i, j≤ n,

then let Gi j denote the set of field isomorphisms from L j to Li. If s ∈ Gi j, then we indicate this by writing
d(s) = j and c(s) = i. If we let G be the union of the Gi j, for 1 ≤ i, j ≤ n, then G is a groupoid. For each
s ∈ G, let σs = s. Suppose that α is a map G(2) → ⊔n

i=1 Li with α(s, t) ∈ Lc(s), for (s, t) ∈ G(2) satisfying
(2), (3) and (4) for all (s, t,r) ∈ G(3) and all a ∈ Ld(t). The category crossed product F oσ

α G extends the
construction usually defined by Galois field extensions L/K. By Proposition 2, the centre of Foσ

α G is the
collection of ∑e∈ob(G) aeue with ae = s(a f ) for all e, f ∈ ob(G) and all s ∈ G with c(s) = e and d(s) = f .
Therefore the centre is a field isomorphic to LG1,1 and we retrieve the first part of Theorem 4 in [12].

3. THE COMMUTANT OF THE COEFFICIENT RING

Proposition 4. The commutant of A in Aoσ
α G is the collection of ∑s∈G asus in Aoσ

α G satisfying as = 0,
for s ∈ G, with d(s) 6= c(s), and asσs(a) = aas, for s ∈ G with d(s) = c(s) and a ∈ Ad(s).

Proof. The first claim follows from the fact that the equality (∑s∈G asus)ue = ue(∑s∈G asus) holds for all
e ∈ ob(G). The second claim follows from the fact that the equality (∑s∈G asus)aue = aue(∑s∈G asus) holds
for all e ∈ ob(G) and all a ∈ Ae.

Recall that the annihilator of an element r in a commutative ring R is the collection, denoted ann(r), of
elements s in R with the property that rs = 0.

Corollary 3. Suppose that A is commutative. Then the commutant of A in Aoσ
α G is the collection of

∑s∈G asus in Aoσ
α G satisfying as = 0, for s ∈ G with d(s) 6= c(s), and σs(a)− a ∈ ann(as), for s ∈ G with

d(s) = c(s) and a ∈ Ad(s). In particular, A is maximal commutative in Aoσ
α G if and only if for all choices

of e ∈ ob(G), s ∈ Ge \{e}, as ∈ Ae, there is a nonzero a ∈ Ae with the property that σs(a)−a /∈ ann(as).

Proof. This follows immediately from Proposition 4.

Corollary 4. Suppose that each Ae, e ∈ ob(G), is an integral domain. Then the commutant of A in Aoσ
α G

is the collection of ∑s∈G asus in Aoσ
α G satisfying as = 0 whenever σs is not an identity map. In particular,

A is maximal commutative in Aoσ
α G if and only if for all nonidentity s ∈ G, the map σs is not an identity

map.

Proof. This follows immediately from Corollary 3.

Proposition 5. If A is commutative, G a disjoint union of abelian monoids and α is symmetric, then the
commutant of A in Aoσ

α G is the unique maximal commutative subalgebra of Aoσ
α G containing A.

Proof. We need to show that the commutant of A in Aoσ
α G is commutative. By the first part of Proposition

4, we can assume that G is an abelian monoid. If we take ∑s∈G asus and ∑t∈G btut in the commutant of A in
Aoσ

α G, then, by the second part of Proposition 4 and the fact that α is symmetric, we get that

∑
s∈G

asus ∑
t∈G

btut = ∑
s,t∈G

asσs(bt)α(s, t)ust = ∑
s,t∈G

asbtα(s, t)ust

= ∑
s,t∈G

btasα(t,s)uts = ∑
s,t∈G

btσt(as)α(t,s)ust = ∑
t∈G

btut ∑
s∈G

asus.
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Remark 4. Proposition 4, Corollary 3, Corollary 4, and Proposition 5 together generalize Theorem 1,
Corollaries 5–10, and Proposition 4 in [18] from groups to categories.

Remark 5. Let AoG be a category algebra where all the rings Ae, e ∈ ob(G), coincide with a fixed integral
domain D. Then AoG is the usual category algebra DG of G over D. By Corollary 4, the commutant of D
in DG is DG itself. In particular, A is maximal commutative in DG if and only if G is the disjoint union of
|ob(G)| copies of the trivial group.

Remark 6. Let L/K be a finite separable (not necessarily normal) field extension. We use the same notation
as in Remark 3. By Corollary 4, the commutant of F in Foσ

α G is the collection of ∑n
i=1 ∑s∈Gii asus satisfying

as = 0 whenever σs is not an identity map. In particular, F is maximal commutative in Foσ
α G if all groups

Gi,i, i = 1, . . . ,n, are nontrivial; this of course happens in the case when L/K is a Galois field extension.

4. COMMUTATIVITY AND IDEALS

In this section, we investigate the connection between on the one hand maximal commutativity of the
coefficient ring and on the other hand nonemptiness of intersections of the coefficient ring by nonzero
two-sided ideals. For the rest of the article, we assume that ob(G) is finite. Recall (from Section 1) that this
is equivalent to the fact that Aoσ

α G has a multiplicative identity; in that case the multiplicative identity is
∑e∈ob(G) ue.

Theorem 2. If Aoσ
α G is a groupoid crossed product such that for every s ∈ G, α(s,s−1) is not a zero-

divisor in Ac(s), then every intersection of a nonzero two-sided ideal of Aoσ
α G with the commutant of Z(A)

in Aoσ
α G is nonzero.

Proof. We show the contrapositive statement. Let C denote the commutant of Z(A) in Aoσ
α G and suppose

that I is a two-sided ideal of Aoσ
α G with the property that I

⋂
C = {0}. We wish to show that I = {0}. Take

x ∈ I. If x ∈C, then by the assumption x = 0. Therefore we now assume that x = ∑s∈G asus ∈ I, as ∈ Ac(s),
s ∈ G, and that x is chosen so that x /∈C with the set S := {s ∈ G | as 6= 0} of least possible cardinality N.
Seeking a contradiction, suppose that N is positive. First note that there is e ∈ ob(G) with uex ∈ I \C. In
fact, if uex ∈C for all e ∈ ob(G), then x = 1x = ∑e∈ob(G) uex ∈C, which is a contradiction. By minimality
of N we can assume that c(s) = e, s ∈ S, for some fixed e ∈ ob(G). Take t ∈ S and consider the element
x′ := xut−1 ∈ I. Since α(t, t−1) is not a zero-divisor we get that x′ 6= 0. Therefore, since I

⋂
C = {0},

we get that x′ ∈ I \C. Take a = ∑ f∈ob(G) b f u f ∈ Z(A) and note that Z(A) =
⊕

f∈ob(G) Z(A f ). Then
I 3 x′′ := ax′−x′a = ∑s∈S(bc(s)as−asσs(bd(s)))us. In the Ae component of this sum we have beae−aebe = 0
since be ∈ Z(Ae). Thus, the summand vanishes for s = e, and hence we get, by the assumption on N, that
x′′ = 0. Since a ∈ Z(A) was arbitrarily chosen, we get that x′ ∈C which is a contradiction. Therefore N = 0
and hence S = /0 which in turn implies that x = 0. Since x ∈ I was arbitrarily chosen, we finally get that
I = {0}.

Corollary 5. If Aoσ
α G is a groupoid crossed product with A maximal commutative and for every s ∈ G,

α(s,s−1) is not a zero-divisor in Ac(s), then every intersection of a nonzero two-sided ideal of Aoσ
α G with

A is nonzero.

Proof. This follows immediately from Theorem 2.

Now we examine conditions under which the converse statement of Corollary 5 is true. To this end,
we recall some notions from category theory that we need in the sequel (for the details see e.g. [15]). Let
G be a category. A congruence relation R on G is a collection of equivalence relations Ra,b on hom(a,b),
a,b∈ ob(G), chosen so that if (s,s′)∈Ra,b and (t, t ′)∈ Rb,c, then (ts, t ′s′)∈Ra,c for all a,b,c∈ ob(G). Given
a congruence relation R on G we can define the corresponding quotient category G/R as the category having
as objects the objects of G and as arrows the corresponding equivalence classes of arrows from G. In that
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case there is a full functor QR : G → G/R which is the identity on objects and sends each morphism of G
to its equivalence class in R. We will often use the notation [s] := QR(s), s ∈ G. Suppose that H is another
category and that F : G→ H is a functor. The kernel of F , denoted ker(F), is the congruence relation on G
defined by letting (s, t) ∈ ker(F)a,b, a,b ∈ ob(G), whenever s, t ∈ hom(a,b) and F(s) = F(t). In that case
there is a unique functor PF : G/ker(F)→H with the property that PFQker(F) = F . Furthermore, if there
is a congruence relation R on G contained in ker(F), then there is a unique functor N : G/R→ G/ker(F)
with the property that N QR = Qker(F). In that case there is therefore always a factorization F = PFN QR;
we will refer to this factorization as the canonical one.

Proposition 6. Let {A,G,σ ,α} and {A,H,τ,β} be crossed systems with ob(G) = ob(H). Suppose that
there is a functor F : G → H satisfying the following three criteria: (i) F is the identity map on objects;
(ii) τF(s) = σs, for s ∈ G; (iii) β (F(s),F(t)) = α(s, t), for (s, t) ∈ G(2). Then there is a unique A-algebra
homomorphism Aoσ

α G→ Aoτ
β H, denoted F̃, satisfying F̃(us) = uF(s), for s ∈ G.

Proof. Take x := ∑s∈G asus in Aoσ
α G where as ∈ Ac(s), for s ∈ G. By A-linearity we get that F̃(x) =

∑s∈G asF̃(us) = ∑s∈G asuF(s). Therefore F̃ is unique. It is clear that F̃ is additive. By (i), F̃ respects the
multiplicative identities. Now we show that F̃ is multiplicative. Take another y := ∑s∈G bsus in Aoσ

α G
where bs ∈ Ac(s), for s ∈ G. Then, by (ii) and (iii), we get that

F̃(xy) = F̃


 ∑

(s,t)∈G(2)

asσs(bt)α(s, t)ust


 = ∑

(s,t)∈G(2)

asσs(bt)α(s, t)uF(st)

= ∑
(s,t)∈G(2)

asτF(s)(bt)β (F(s),F(t))uF(s)F(t) = F̃(x)F̃(y).

Remark 7. Suppose that {A,G,σ ,α} is a crossed system. By abuse of notation, we let A denote the
category with the rings Ae, for e ∈ ob(G), as objects and ring homomorphisms Ae → A f , for e, f ∈ ob(G), as
morphisms. Define a map σ : G→ A on objects by σ(e) = Ae, for e ∈ ob(G), and on arrows by σ(s) = σs,
for s ∈ G. By Eq. (4) it is clear that σ is a functor if the following two conditions are satisfied: (i) for all
(s, t)∈G(2), α(s, t) belongs to the centre of Ac(s); (ii) for all (s, t)∈G(2), α(s, t) is not a zero-divisor in Ac(s).

Proposition 7. Let Aoσ
α G be a category crossed product with σ : G → A a functor. Suppose that R is a

congruence relation on G with the property that the associated quadruple {A,G/R,σ([·]),α([·], [·])} is a
crossed system. If I is the two-sided ideal in Aoσ

α G generated by an element ∑s∈G asus, where as ∈ Ac(s),
for s ∈G, satisfying as = 0 if s does not belong to any of the classes [e], for e ∈ ob(G), and ∑s∈[e] as = 0, for
e ∈ ob(G), then A

⋂
I = {0}.

Proof. By Proposition 6, the functor QR induces an A-algebra homomorphism Q̃R : Aoσ
α G → Aoσ([·])

α([·],[·])
G/R. By the definition of as, for s ∈ G, we get that

Q̃R

(
∑
s∈G

asus

)
= Q̃R

(
∑

e∈ob(G)
∑

s∈[e]
asus

)
= ∑

e∈ob(G)
∑

s∈[e]
asu[s] = ∑

e∈ob(G)

(
∑

s∈[e]
as

)
u[e] = 0.

This implies that Q̃R(I) = {0}. Since Q̃R|A = idA, we therefore get that I
⋂

A = (Q̃R|A)(A
⋂

I) ⊆ Q̃R(I) =
{0}.

Let G be a groupoid and suppose that we for each e ∈ ob(G) are given a subgroup Ne of Ge. We say that
N =

⋃
e∈ob(G) Ne is a normal subgroupoid of G if sNd(s) = Nc(s)s for all s ∈ G. The normal subgroupoid N

induces a congruence relation ∼ on G defined by letting s∼ t, for s, t ∈ G, if there is n in Nd(t) with s = nt.
The corresponding quotient category is a groupoid which is denoted G/N. For more details, see e.g. [4];
note that our definition of normal subgroupoids is more restrictive than the one used in [4].
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Proposition 8. Let Aoσ
α G be a groupoid crossed product such that for each (s, t) ∈G(2), α(s, t) ∈ Z(Ac(s))

and α(s, t) is not a zero-divisor in Ac(s). Suppose that N is a normal subgroupoid of G with the property that
σn = idAc(n) , for n ∈ N, and α(s, t) = 1Ac(s) if s ∈ N or t ∈ N. If I is the two-sided ideal in Aoσ

α G generated
by an element ∑s∈G asus, with as ∈ Ac(s), for s ∈ G, satisfying as = 0 if s does not belong to any of the sets
Ne, for e ∈ ob(G), and ∑s∈Ne as = 0, for e ∈ ob(G), then A

⋂
I = {0}.

Proof. By Remark 7, σ is a functor G → A and ∼ ⊆ ker(σ). Therefore, by the discussion preceding
Proposition 6, there is a well-defined functor σ [·] : G/N → A. Now we show that the induced map α([·], [·])
is well-defined. By Eq. (3) with s = n ∈ Nc(t) we get that α(n, t)α(nt,r) = σn(α(t,r))α(n, tr). By the
assumptions on α and σ we get that α(nt,r) = α(t,r). Analogously, by Eq. (3) with t = n ∈ Nd(r), we get
that α(s, t) = α(s, tn). Therefore, α([·], [·]) is well-defined. The rest of the claim now follows immediately
from Proposition 7.

Proposition 9. Let Aoσ G be a skew category algebra. Suppose that R is a congruence relation on G
contained in ker(σ). If I is the two-sided ideal in Aoσ G generated by an element ∑s∈G asus, where
as ∈ Ac(s), for s ∈ G, satisfying as = 0 if s does not belong to any of the classes [e], for e ∈ ob(G), and
∑s∈[e] as = 0, for e ∈ ob(G), then A

⋂
I = {0}.

Proof. By Remark 7 and the discussion preceding Proposition 6, there is a well-defined functor
σ [·] :G/R→ A. The claim now follows immediately from Proposition 7.

Proposition 10. Let Aoσ G be a skew groupoid ring with all Ae, for e ∈ ob(G), equal integral domains and
each Ge, for e ∈ ob(G), an abelian group. If every intersection of a nonzero two-sided ideal of Aoσ G and
A is nonzero, then A is maximal commutative in Aoσ G.

Proof. We show the contrapositive statement. Suppose that A is not maximal commutative in Aoσ G. By
the second part of Corollary 4, there is e∈ ob(G) and a nonidentity s∈Ge such that σs = idAe . Let Ne denote
the cyclic subgroup of Ge generated by s. Note that since Ge is abelian, Ne is a normal subgroup of Ge. For
each f ∈ ob(G), define a subgroup N f of G f in the following way. If Ge, f 6= /0, then let N f = sNes−1, where
s is a morphism in Ge, f . If, on the other hand, Ge, f = /0, then let N f = { f}. Note that if s1,s2 ∈ Ge, f , then
s−1

2 s1 ∈ Ge and hence s1Nes−1
1 = s2s−1

2 s1Ne(s−1
2 s1)−1s−1

2 = s2Nes−1
2 . Therefore, N f is well-defined. Now

put N =
⋃

f∈ob(G) N f . It is clear that N is a normal subgroupoid of G and that σn = idAe , n ∈ N. Let I be the
nonzero two-sided ideal of Aoσ G generated by ue−us. By Proposition 8 (or Proposition 9) it follows that
A

⋂
I = {0}.

Remark 8. Proposition 2, Corollary 5, and Propositions 7–10 together generalize Theorem 2, Corollary 11,
Theorem 3, Corollaries 12–15, and Theorem 4 in [18] from groups to categories.

By combining Theorem 2 and Proposition 10, we get the following result.

Corollary 6. If Aoσ G is a skew groupoid ring with all Ae, for e ∈ ob(G), equal integral domains and
each Ge, for e ∈ ob(G), an abelian group, then A is maximal commutative in Aoσ G if and only if every
intersection of a nonzero two-sided ideal of Aoσ G and A is nonzero.
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17. Nǎstǎsescu, C. and Van Oystaeyen, F. Graded Ring Theory. North-Holland Publishing Co., Amsterdam–New York, 1982.
18. Öinert, J. and Silvestrov, S. D. Commutativity and ideals in algebraic crossed products. J. Gen. Lie T. Appl., 2008, 2(4),

287–302.
19. Öinert, J. and Silvestrov, S. D. On a correspondence between ideals and commutativity in algebraic crossed products. J. Gen.

Lie T. Appl., 2008, 2(3), 216–220.
20. Öinert, J. and Silvestrov, S. D. Crossed product-like and pre-crystalline graded rings. In Generalized Lie Theory in

Mathematics, Physics and Beyond (Silvestrov, S., Paal, E., Abramov, V., and Stolin, A., eds). Springer-Verlag, Berlin,
Heidelberg, 2009, 281–296.

21. Öinert, J. and Silvestrov, S. Commutativity and ideals in pre-crystalline graded rings. Acta Appl. Math., 2009, 108(3), 603–615.
22. Öinert, J., Silvestrov, S. D., Theohari-Apostolidi, T., and Vavatsoulas, H. Commutativity and ideals in strongly graded rings.

Acta Appl. Math., 2009, 108(3), 585–602.
23. Passman, D. S. The Algebraic Structure of Group Rings. Pure and Applied Mathematics. Wiley-Interscience (John Wiley &

Sons), New York–London–Sydney, 1977.

Kommutatiivsus ja ideaalid kategooriaga gradueeritud ristkorrutistes

Johan Öinert ja Patrik Lundström

On defineeritud kategooriaga gradueeritud ristkorrutise mõiste, mis samaaegselt üldistab nii maatriksringide
kui ka rühmaga gradueeritud ristkorrutise mõisteid. Kategooriaga gradueeritud ristkorrutis moodustab
algebra üle kordajate ringi. Sellise algebra jaoks kirjeldatakse tsenter ja kordajate ringi kommutant.
Samuti on uuritud seost selle algebra kahepoolsete ideaalide ja kordajate ringi ühisosa ning kordajate ringi
maksimaalse kommutatiivsuse vahel.


