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Abstract. One-sided shift spaces are a special kind of non-invertible topological dynamical system with which one can associate a
C∗-algebra. We show how to construct the C∗-algebra associated with a one-sided shift space as the Cuntz–Pimsner C∗-algebra of
a C∗-correspondence and use this to compute its K-theory.
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1. INTRODUCTION

A one-sided shift space (also called a one-sided subshift) is a closed subset X of aN (here, and in the rest
of the paper, N denotes the set of non-negative integers), where a is a finite set equipped with the discrete
topology and aN is equipped with the product topology, such that σ(X)⊆ X, where σ is the map from aN to
itself defined by

(σ(xn)n∈N)k = xk+1

for (xn)n∈N ∈ aN and k ∈ N (we refer the interested reader to [7] and [8, Section 13.8] for more details). We
say that a is the alphabet of X, and that X is a one-sided shift space over a. If we in the above instead of N
use Z (the set of integers), we get what is called a two-sided shift space (also called a two-sided subshift,
cf. [7] and [8]). Every two-sided shift space Λ natural gives rise to a one-sided shift space

{(xn)n∈N | (xn)n∈Z ∈ Λ}

which we denote by XΛ. A one-sided shift space X is of this form if and only if σ(X) = X.
In [9] Matsumoto associated with every two-sided shift Λ space a C∗-algebra OΛ. Later an alternative

definition of OΛ occurred in [11,13,3]. Heavily inspired by these constructions, the first named author
associated in [1] with every one-sided shift space X a C∗-algebra (see [4] for a discussion of the relationship
between this C∗-algebra and the above-mentioned C∗-algebras constructed in [9] and in [11,13,3]). This
C∗-algebra was further studied by the authors in [4], where it is denoted by DXoα,L N and where it is
shown that this algebra can be constructed as one of Exel’s crossed products by an endomorphism [5].

We will now for the benefit of the reader give a brief description of DXoα,L N which occurred in [4].
Let X be a one-sided shift space over the alphabet a (i.e., X⊆ aN) and let a∗ be the set of finite words in a.
∗ Corresponding author, ssilvest@maths.lth.se
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We call the number of elements (letters) in u ∈ a for the length of u and denote it by |u|. For u,v ∈ a∗ we
denote by C(u,v) the subset {vx ∈ X | ux ∈ X} of X consisting of all those elements in X which begin with
v and for which we get the sequence by replacing the leading v by u also belonging to X. We then let DX be
the C∗-algebra of l∞(X) (the C∗-algebra of bounded functions on X) generated by {1C(u,v) | u,v ∈ a∗}, where
1C(u,v) denote the characteristic function of C(u,v). According to [4, Theorem 10], DXoα,L N is then the
universal C∗-algebra generated by a family of partial isometries (su)u∈a∗ satisfying:
1. susv = suv for all u,v ∈ a∗,
2. the map 1C(u,v) 7→ svs∗usus∗v , u,v ∈ a∗ extends to a ∗-homomorphism from DX to the C∗-algebra generated

by {su | u ∈ a∗}.
It follows from this universal property that there exists an action γ of T (the unit circle in the complex plan)
on DXoα,L N characterized by γz(su) = z|u|su for z ∈ T and u ∈ a∗. This action is called the gauge action.

Among the properties of DXoα,L N studied in [4] is its K-theory. In [4, Theorem 26] a description of
K0(DXoα,L N) and K1(DXoα,L N) was announced. However, no proof of the result was provided, and
consequently the formulation, while being right in spirit, was not correct with respect to the definition of the
maps Bl and B used in [4, Theorem 26]. The correct definition of the maps Bl and B and the theorem are as
follows.

For l ∈ N let a∗l denote the words in a of length at most l. Following Matsumoto (cf. [12]), for every
l ∈ N and every x ∈ X, we define Pl(x) by

Pl(x) = {u ∈ a∗l | ux ∈ X}.
We then define an equivalence relation ∼l on X, called l-past equivalence, by

x∼l y ⇐⇒ Pl(x) = Pl(y).

For each l ∈ N, we let m(l) be the number of l-past equivalence classes (which is finite because a∗l is
finite), and we denote the l-past equivalence classes by E l

1 ,E l
2 , . . . ,E l

m(l). One can show (cf. [4, p. 291]) that
1E l

i
∈DX for l ∈N and i∈ {1,2, . . . ,m(l)}. For each l ∈N, j ∈ {1,2, . . . ,m(l)}, and i∈ {1,2, . . . ,m(l +1)},

let

Il(i, j) =
{

1 if E l+1
i ⊆ E l

j
0 else.

For l ∈ N we denote by e1,e2, . . . ,em(l) the canonical generators of the group Zm(l). There is then a unique

group homomorphism Il
0 : Zm(l) → Zm(l+1) which for each j ∈ {1,2 . . . ,m(l)} maps e j to ∑m(l+1)

i=1 Il(i, j)ei.
We denote by ZX0 the inductive limit lim−→(Zm(l), Il

0).

For a subset E of X and a u ∈ a∗, let uE = {ux ∈ X | x ∈ E }. For each l ∈ N, j ∈ {1,2, . . . ,m(l)}, i ∈
{1,2, . . . ,m(l +1)} and a ∈ a, let

Al(i, j,a) =
{

1 if /0 6= aE l+1
i ⊆ E l

j
0 else.

For every l ∈ N denote by Bl the linear map from Zm(l) to Zm(l+1) given by

e j 7→
m(l+1)

∑
i=1

(
Il(i, j)−∑

a∈a

Al(i, j,a)

)
ei.

One can easily check that the following diagram commutes for every l ∈ N:

Zm(l) Bl
//

Il
0

²²

Zm(l+1)

Il+1
0

²²
Zm(l+1) Bl+1

// Zm(l+2).
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Hence the family {Bl}l∈N induces a linear map B from ZX0 to ZX0 . For l ∈ N let ιl denote the map from
Zm(l) to ZX0 given by the universal property of the inductive limit lim−→(Zm(l), Il

0) = ZX0 .

Theorem 1. Let X be a one-sided shift space. Then

K0(DXoα,L N)∼= ZX0/BZX0 ,

and
K1(DXoα,L N)∼= ker(B).

More precisely, the map
[1E l

i
]0 7→ ιl(ei)

induces an isomorphism from K0(DXoα,L N) to ZX0/BZX0 .

It should be noticed that when the shift map σ of X is surjective (i.e., when X = XΛ for some two-sided
shift space Λ), then ZX1 = ZX0 (where ZX1 is as defined in [4, p. 303]), and thus [4, Theorem 26] is correct
in this case. It is, however, not difficult to construct examples of one-sided shift spaces X such that [4,
Theorem 26] is not correct for these one-sided shift spaces. One should also notice that if the one-sided
shift space under consideration is of the form XΛ for some two-sided shift space Λ, the description of the
K-groups of the C∗-algebra DXoα,L N can, as mentioned in [4, p. 301], be obtained from [10] and [13].

The purpose of this paper is to give a complete proof of Theorem 1. There are several ways to prove
this theorem. We will do it by constructing, for every one-sided shift space X, the C∗-algebra DXoα,L N as
the Cuntz–Pimsner algebra of a C∗-correspondence and then apply Theorem 8.6 of [6] (which we, for the
benefit of the reader, have restated as Theorem 6 in Section 3). In this connection, it is worth mentioning that
the construction of D ×α,L N as a Cuntz–Pimsner algebra given in this paper is related to the construction
given in [14, Section 6]. But in [14] the λ -graphs systems that the author considers are essential (otherwise
the operator v defined in [14, (6.1) on p. 19] would not be an isometry), so that the construction only works
when the one-sided shift space under consideration is of the form XΛ for some two-sided shift space Λ, and
not for all one-sided shift spaces as the construction given in this paper does.

Section 2 of this paper contains the above-mentioned construction of DXoα,L N as a Cuntz–Pimsner
algebra and Section 3 contains the proof of Theorem 1.

2. THE CONSTRUCTION OF DXoα,L N AS A CUNTZ–PIMSNER ALGEBRA

In this section we will construct a C∗-correspondence HX for an arbitrary one-sided shift space X, such that
the Cuntz–Pimsner algebra OHX

of HX is canonical isomorphic to DXoα,L N. In [1], DXoα,L N (which in
that paper is denoted by OX) is constructed as the Cuntz–Pimsner algebra of a C∗-correspondence. However,
for our purpose, it will be more useful to construct DXoα,L N as the Cuntz–Pimsner algebra of another
C∗-correspondence. It should be noted that the construction which we will describe here has previously
appeared in the first named author’s Master’s thesis.

In our discussion of Cuntz–Pimsner algebras and C∗-correspondence, we will use the notation and
terminology of [6]. We will, for the benefit of the reader, here briefly recall the definition of a C∗-cor-
respondence and its corresponding Cuntz–Pimsner C∗-algebra. Let A be a C∗-algebra. A right Hilbert
A -module H is a Banach space with a right action of the C∗-algebra A and an A -valued inner product
〈·, ·〉H satisfying
1. 〈ξ ,ηa〉H = 〈ξ ,η〉Ha,
2. 〈ξ ,η〉H = 〈η ,ξ 〉∗H,
3. 〈ξ ,ξ 〉H ≥ 0 and ‖ξ‖H = ‖〈ξ ,ξ 〉H‖1/2

A ,
for ξ ,η ∈ H and a ∈A , where ‖·‖H is the norm in H and ‖·‖A is the norm in A .
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A map θ : H→ H is called adjointable if there exists a (necessarily unique) map θ ∗ : H→ H such that
〈θξ ,η〉H = 〈ξ ,θ ∗η〉H for all ξ ,η ∈ H. We denote by L (H) the C∗-algebra of all adjointable operators
on H. For ξ ,η ∈ H, the operator θξ ,η ∈ L (H) is defined by θξ ,η(ζ ) = ξ 〈η ,ζ 〉H for ζ ∈ H. We define
K (H)⊆L (H) by

K (H) = span{θξ ,η | ξ ,η ∈ H},
where span{· · ·} denotes the closure of the linear span of {· · ·}. We then have that K (H) is a closed
two-sided ideal in L (H).

Let φ : A →L (H) be a ∗-homomorphism. Then ax := φ(a)x defines a left action of A on H. A Hilbert
A -bimodule equipped with such a left action is what we call a C∗-correspondence over A .

A representation (π, t) of a C∗-correspondence (H,φ) over A on a C∗-algebra B consists of a linear map
t : H→ B and a ∗-homomorphism π : A → B such that

t(ξ a) = t(ξ )π(a), t(ξ )∗t(η) = π(〈ξ ,η〉H), and t(aξ ) = π(a)t(ξ )

for ξ ,η ∈ H and a ∈ A . Given such a representation, there is a ∗-homomorphism ψt : K (H)→ B which
satisfies

ψt(θξ ,η) = t(ξ )t(η)∗

for all ξ ,η ∈ H.
We denote by JH the closed two-sided ideal φ−1(K (H))∩ (kerφ)⊥ in A , where (kerφ)⊥ = {a ∈A |

ab = 0 for all b ∈ kerφ}, and we say that a representation (π, t) of (H,φ) is covariant if

ψt(φ(a)) = π(a)

for all a ∈ JH. The Cuntz–Pimsner C∗-algebra OH of the C∗-correspondence (H,φ) is then the universal
C∗-algebra generated by a covariant representation of (H,φ). It follows from the universal property of OH

that there is an action γ of T on OH characterized by γ(πH(a)) = πH(a) and γ(tH(ξ )) = ztH(ξ ) for z ∈ T,
a ∈A , and ξ ∈ H, where (πH, tH) is the universal covariant representation of (H,φ) on OH. This action is
called the gauge action.

Let X be a one-sided shift space over the alphabet a. We will now construct a C∗-correspondence
(HX,φX) such that OHX

is isomorphic to DXoα,L N. We denote by ε the empty word in a∗ (the word
consisting of no letters). We then have that C(u,ε) = {x ∈ X | ux ∈ X} for u ∈ a∗. Let AX be the C∗-sub-
algebra of DX (and thus of l∞(X)) generated by {1C(a,ε) | u ∈ a∗}, and for each a ∈ a let Aa be the ideal
of AX generated by 1C(a,ε). We let HX be the right Hilbert A -module

⊕
a∈a Aa, where the right action is

defined by (χa)a∈a f = (χa f )a∈a for (χa)a∈a ∈ HX and f ∈AX, and the inner product is defined by

〈
(χa)a∈a | (ηa)a∈a

〉
HX

= ∑
a∈a

χ∗a ηa

for (χa)a∈a,(ηa)a∈a ∈ HX.
To make HX into a C∗-correspondence over AX, we need to specify a left action of AX on HX, i.e., a

∗-homomorphism from AX to L (HX).
For a ∈ a and a function f from X to C we let λa( f ) be the function from X to C defined by

λa( f )(x) =

{
f (ax) if ax ∈ X,

0 if ax /∈ X

for x ∈ X.

Lemma 2. For every a ∈ a we have that λa(AX)⊆Aa.
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Proof. If u ∈ a∗, then λa(1C(u,ε)) = 1C(ua,ε) ≤ 1C(a,ε). Thus λa(1C(u,ε)) ∈Aa for every u ∈ a∗. It is easy to
check that λa is a ∗-homomorphism from l∞(X) to l∞(X). Since AX is the C∗-subalgebra of l∞(X) generated
by {1C(u,ε) | u ∈ a∗}, and λa(1C(u,ε)) ∈Aa for every u ∈ a∗, it follows that λa(AX)⊆Aa.

We can now define our left action φX of AX on HX by letting φX( f )(χa)a∈a = (λa( f )χa)a∈a for f ∈AX

and (χa)a∈a ∈ HX.

Lemma 3. The map φX is an injective ∗-homomorphism from AX to L (HX).

Proof. It is easy to check that φX is a ∗-homomorphism from AX to L (HX).
Assume that f ∈AX and φX( f ) = 0. We then have that λa( f ) = 0 for all a ∈ a. If we for x ∈ X let a be

the first letter of x, we have that f (x) = λa( f )(σ(x)) = 0. Thus f = 0, which shows that φX is injective.

The following lemma is straightforward to check.

Lemma 4. We have for f ∈AX that φX( f ) = ∑a∈a θea,eaλa( f ). Thus φX(AX)⊆K (HX).

Theorem 5. Let X be a one-sided shift space, and let HX be the Hilbert AX-bimodule defined above.
Then their exists a unique ∗-isomorphism from the Cuntz–Pimsner algebra OHX

of HX to the C∗-algebra
DXoα,L N which for every f ∈AX maps πHX

( f ) to f and which for every (χa)a∈a ∈HX maps tHX
((χa)a∈a)

to ∑a∈a saχa, where (πHX
, tHX

) is the universal covariant representation of HX on OHX
.

Proof. Since OHX
is generated by {πHX

( f ) | f ∈ AX} ∪ {tHX
(η) | η ∈ HX}, there can at most be one

∗-homomorphism from OHX
of HX to DXoα,L N which for every f ∈ AX maps πHX

( f ) to f and which
for every (χa)a∈a ∈ HX maps tHX

((χa)a∈a) to ∑a∈a saχa.
For f ∈ AX let π( f ) = f , and for (χa)a∈a ∈ HX let t((χa)a∈a) = ∑a∈a saχa. Then π is an injective

∗-homomorphism from AX to DXoα,L N (π is just the inclusion of AX into DXoα,L N), and t is a linear
map from HX to DXoα,L N which satisfies that t(χ f ) = t(χ)π( f ) for χ ∈ HX and f ∈AX.

It is not difficult to check (cf. [4, p. 286]) that if a,b ∈ a, then s∗asb = 0 if a 6= b and s∗asa = 1C(a,ε), so if
(χa)a∈a,(ηa)a∈a ∈ HX, then

t
(
(χa)a∈a

)∗t((ηa)a∈a

)
=

(
∑
a∈a

saχa

)∗(
∑
a∈a

saηa

)
= ∑

a,b∈a

χ∗a s∗asbηa

= ∑
a∈a

χ∗a ηa = π
(〈(χa)a∈a | (ηa)a∈a〉

)
.

It is not difficult to check (cf. [4, p. 286]) that if a ∈ a and f ∈ AX, then s∗a f sa = λa( f ), so if f ∈ AX and
(χa)a∈a ∈ HX, then

f t((χa)a∈a) = f ∑
a∈a

saχa = ∑
a∈a

f sas∗asaχa = ∑
a∈a

sas∗a f saχa

= ∑
a∈a

saλa( f )χa = t(φX( f )(χa)a∈a).

Thus, (π, t) is an injective representation of HX. Hence there exists a ∗-homomorphism ψt from K (HX) to
DXoα,L N which for χ,η ∈ HX maps θχ,η to t(χ)∗t(η) (cf. [6, Definition 2.3]). If f ∈AX, we have

ψt(φX( f )) = ∑
a∈a

θea,eaλa( f ) = ∑
a∈a

saλa( f )s∗a = ∑
a∈a

sas∗a f sas∗a = f = π( f ).

Thus the representation (π, t) is covariant. Hence there exists a ∗-homomorphism ζ from OHX
to DXoα,L N

which for every f ∈AX maps πHX
( f ) to π( f ) = f and which for every (χa)a∈a ∈ HX maps tHX

((χa)a∈a) to
t((χa)a∈a) = ∑a∈a saχa.
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The gauge action γ on DXoα,L N satisfies that γz(π( f )) = γz( f ) = f and

γz(t(χa)a∈a) = γz

(
∑
a∈a

saχa

)
= z ∑

a∈a

saχa = zt(χa)a∈a

for all z ∈ T, f ∈AX, and (χa)a∈a ∈ HX. Thus the representation (π, t) admits a gauge action.
Since the representation (π, t) is injective and admits a gauge action, the ∗-homomorphism ζ is injective

according to [6, Theorem 6.4]. Since DXoα,L N is generated by {sa | a ∈ a} and ζ (tHX
(ea)) = t(ea) = sa,

it follows that ζ is also surjective.

3. THE PROOF OF THEOREM 1

In this section we will prove Theorem 1. We will do this by applying Theorem 8.6 of [6] to the
C∗-correspondence introduced in the previous section. We will, for the benefit of the reader, first state
Theorem 8.6 of [6] and explain the necessary notation.

Let (H,φ) be a C∗-correspondence over a C∗-algebra A and let DH denote the C∗-algebra K (H⊕A ).
We denote the natural embedding of A into DH by ιA and the natural embedding of K (H) into DH by
ιK (H). It is shown in [6, Proposition B.3] that the map (ιA )∗ : K∗(A ) → K∗(DH) induced by ιA is an
isomorphism. The map [H] : K∗(JH)→ K∗(A ) is then defined as (ιA )−1∗ ◦ (ιK H)∗ ◦ (φ)∗. Let ι∗ : K∗(JH)→
K∗(A ) denote the map induced by the inclusion ι of JH into A and let (πH)∗ : K∗(A )→ K∗(OH) denote
the map induced by the ∗-homomorphism πH : A → OH.

Theorem 6. ([6, Theorem 8.6]). Let (H,φ) be a C∗-correspondence over a C∗-algebra A . Then we have
the following exact sequences:

K0(JH)
ι∗−[H] // K0(A )

(πH)∗ // K0(OH)

²²
K1(OH)

OO

K1(A )
(πH)∗oo K1(JH).

ι∗−[H]oo

Let X be a one-sided shift space. We will now use Theorem 6 to compute the K-theory of DXoα,L N.
But first a few lemmas.

Lemma 7. We have that ideal JHX
= φ−1

X (K (HX))∩ (kerφX)⊥ of AX is all of AX.

Proof. This follows directly from Lemmas 3 and 4.

Lemma 8. Let p ∈AX be a projection and let a ∈ a. Then we have

(ιAX
)∗([p1C(a,ε)]0) = (ιK (HX))∗([θea,ea p]0).

Proof. Let v = θ(ea,0),(0,p) ∈K (DHX
). It is easy to check that vv∗ = ιK (HX)(θea,ea p) and v∗v = ιAX

(p1C(a,ε)).
It follows that (ιAX

)∗([p1C(a,ε)]0) and (ιK (HX))∗([θea,ea p]0) are equivalent in K0(DHX
).

Lemma 9. We have that K1(AX) = 0 and that there exists an isomorphism ρ from ZX0 to K0(AX) which for
l ∈ N and i ∈ {1,2, . . . ,m(l)} maps ιl(ei) to [1E l

i
]0.

We furthermore have for every l ∈ N and for every j ∈ {1,2, . . . ,m(l)} that

ρ−1 ◦ [HX]◦ρ(ιl(e j)) = ∑
a∈a

m(l+1)

∑
i=1

Al(i, j,a)ιl+1(ei). (1)
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Proof. For each l ∈ N let Al be the C∗-subalgebra of AX generated by {1C(u,ε) | u ∈ a∗l }. We then have that
AX is the closure of

⋃
l∈NAl and that Al , for each l ∈ N, is isomorphic to Cm(l) by an isomorphism which

for each i ∈ {1,2, . . . ,m(l)} maps 1E l
i

to ei [cf. 4, p. 291]. It follows that AX is an AF-algebra, and thus that
K1(AX) = 0. The existence of ρ also follows from this.

Let l ∈ N and j ∈ {1,2, . . . ,m(l)}. It follows from the definition of Al(i, j,a) (see [4, p. 301])
that λa(1E l

j
) = ∑m(l+1)

i=1 Al(i, j,a)1E l+1
i

for each a ∈ a. According to Lemma 4, we have that φX(1E l
j
) =

∑a∈a θea,eaλa(1El
j
), so it follows from Lemma 8 that we have

(ιK (HX))∗ ◦ ((φX)|JHX
)∗([1E l

J
]0) = (ιK (HX))∗

([
∑
a∈a

θea,eaλa(1E l
j
)

]

0

)

= ∑
a∈a

(ιK (HX))∗([θea,eaλa(1E l
j
)]0)

= ∑
a∈a

(ιAX
)∗([λa(1E l

j
)]0)

= ∑
a∈a

m(l+1)

∑
i=1

Al(i, j,a)(ιAX
)∗([1E l+1

i
]0),

from which (1) follows.

Proof of Theorem 1. It follows from Theorems 5 and 6 and Lemmas 7 and 9 that we have the following
exact sequence:

0 //K1(DXoα,L N) //ZX0
B //ZX0

κ //K0(DXoα,L N) //0 ,

where κ is the group homomorphism from ZX0 to K0(DXoα,L N) which for l ∈ N and i ∈ {1,2, . . . ,m(l)}
maps ιl(ei) to [1E l

i
]0. It follows that K1(DXoα,L N) ∼= ker(B) and that the map [1E l

i
]0 7→ ιl(ei) induces an

isomorphism from K0(DXoα,L N) to ZX0/BZX0 .
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Ühepoolse nihkeruumiga assotsieeritud C∗-algebra K-teooriast

Toke Meier Carlsen ja Sergei Silvestrov

Ühepoolne nihkeruum on mittepööratava topoloogilise dünaamilise süsteemi eriliik, millega assotsieerub
C∗-algebra. Artiklis on näidatud, kuidas saab konstrueerida ühepoolse nihkeruumiga assotsieeritud
C∗-algebrat kui C∗-vastavuse Cuntzi-Pimsneri algebrat ja kasutada konstrueeritud algebrat K-teooria
arvutamiseks.


