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Computing the index of Lie algebras
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Abstract. The aim of this paper is to compute and discuss the index of Lie algebras. We consider the n-dimensional Lie algebras
for n < 5 and the case of filiform Lie algebras which form a special class of nilpotent Lie algebras. We compute the index of
generalized Heisenberg algebras and graded filiform Lie algebras Ln and Qn. We also discuss the evolution of the Lie algebra index
by deformation.
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1. INTRODUCTION

The index theory of Lie algebras was intensively studied by Elashvili (see [5–8]), in particular the case of
semi-simple Lie algebras and Frobenius Lie algebras. He classified all the algebraic Frobenius algebras
up to dimension 6. In [3], the authors connect the computation of the index to combinatorial theory of
meanders and evaluate the index of a Lie algebra of seaweed type, which is equal to the number of cycles
in an associated permutation. The index of semi-simple Lie algebras was also studied in [21]. The authors
of that paper consider a semi-simple Lie algebra G with a Cartan subalgebra h, R its corresponding root
system, π a base of R, and S, T subsets of π . They provide an upper bound for the index of GS,T , the direct
sum of h, and the sum of the root spaces for the positive roots in the space spanned by S and the sum of the
root spaces for the negative roots in the space spanned by T . They then verify that this inequality is actually
an equality in a number of special cases and conjecture that equality holds in all cases. See also [20], where
the index of a Borel subalgebra of a semi-simple Lie algebra is determined.

The aim of this paper is to compute the index of Lie algebras in low dimensions and in general for
some special cases. In Section 2 we summarize the index theory of Lie algebras. Then, in Section 3, we
recall the classification of n-dimensional Lie algebras for n < 5 and compute the indexes for all these Lie
algebras. Section 4 is dedicated to nilpotent Lie algebras and specially to filiform Lie algebras. We consider
the generalized Heisenberg Lie algebras and the two graded filiform Lie algebras Ln and Qn. Notice that Ln
plays an important role in the study of filiform and nilpotent Lie algebras. It is known that any n-dimensional
filiform Lie algebra may be obtained by deformation of the one of the filiform Lie algebras Ln. In the last
Section we study the evolution by deformation of the index of a Lie algebra. We prove that the index of a
Lie algebra decreases by deformation.
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2. INDEX OF LIE ALGEBRAS

Throughout this paper K is an algebraically closed field of characteristic 0. In this Section we summarize
the index theory of Lie algebras.

Definition 1. A Lie algebra G over K is a pair consisting of a vector space V = G and a skew-symmetric
bilinear map [ , ] : G ×G → G (x,y)→ [x,y] satisfying the Jacobi identity

[x, [y,z]]+ [y, [z,x]]+ [z, [x,y]] = 0 ∀x,y,z ∈ G .

Let x ∈ G . We denote by adx the endomorphism of G defined by adx(y) = [x,y] ∀y ∈ G .
LetV be a finite-dimensional vector space overK provided with the Zariski topology, G be a Lie algebra

and G ∗ its dual. Then G acts on G ∗ as follows:

G ×G ∗ → G ∗,
(x, f ) 7→ x · f ,

where ∀y ∈ G :(x · f )(y)= f ([x,y]) .
Let f ∈ G ∗ and Φ f be a skew-symmetric bilinear form defined by

Φ f : G ×G → K,

(x,y) 7→ Φ f (x,y) = f ([x,y]) .

We denote the kernel of the map Φ f by G f :

G f = {x ∈ G : f ([x,y]) = 0 ∀y ∈ G }.

Definition 2. The index of Lie algebra G is the integer χG = inf
{

dim G f ; f ∈ G ∗} . A linear functional
f ∈ G ∗ is called regular if dim G f = χG . The set of all regular linear functionals is denoted by G ∗

r .

Remark 3. The set G ∗
r of all regular linear functionals is a nonempty Zariski open set.

Let {x1, . . . ,xn} be a basis of G . We can express the index using the matrix ([xi,x j])1≤i< j≤n as a matrix
over the ring S(G ), (see [4]). We have the following proposition:

Proposition 4. The index of an n-dimensional Lie algebra G is the integer

χG = n−RankR(G ) ([xi,x j])1≤i< j≤n ,

where R(G ) is the quotient field of the symmetric algebra S(G ).

Remark 5. The index of an n-dimensional Abelian Lie algebra is n.

Definition 6. A Lie algebra G over an algebraically closed field of characteristic 0 is said to be Frobenius
if there exists a linear form f ∈ G ∗ such that the bilinear form Φ f on G is nondegenerate.

In [7] the author described all the Frobenius algebraic Lie algebras G = R+N whose nilpotent radical N
is Abelian in the following two cases: the reductive Levi subalgebra R acts on N irreducibly; R is simple. He
classified all the algebraic Frobenius algebras up to dimension 6. See also [16–18] for further computations.
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3. LIE ALGEBRAS OF DIMENSION n < 5

In this section we compute the index of n-dimensional Lie algebras with n < 5. Let G be an n-dimensional
Lie algebra and {x1,x2, . . . ,xn} be a fixed basis of V= G .

Any n-dimensional Lie algebra with n < 5 is isomorphic to one of the following Lie algebras.
Dimension 2

G 1
2 : [x1,x2] = x2.

Dimension 3
G 1

3 : [x1,x2] = x3.

G 2
3 : [x1,x2] = x2, [x1,x3] = αx3, α 6= 0.

G 3
3 : [x1,x2] = x2 + x3, [x1,x3] = x3.

G 4
3 : [x1,x3] =−2x2, [x1,x3] =−2x3.

Dimension 4
G 1

4 : [x1,x2] = x2, [x1,x3] = αx3, [x1,x4] = (1+α)x4, [x2,x3] = x4.

G 2
4 : [x1,x2] = x2 + x3, [x1,x3] = x3, [x1,x4] = 2x4, [x2,x3] = x4.

G 3
4 : [x1,x3] = x3, [x1,x4] = x4, [x2,x3] = x4.

G 4
4 : [x1,x2] = x2, [x1,x3] = αx3, [x1,x4] = βx3.

G 5
4 : [x1,x2] = αx2, [x1,x3] = x3 + x4, [x1,x4] = x4.

G 6
4 : [x1,x2] = x2 + x3, [x1,x3] = x3 + x4, [x1,x4] = x4.

G 7
4 : [x1,x2] = x3, [x1,x4] = x4.

G 8
4 : [x1,x2] = x3, [x1,x3] = x4.

G 9
4 : [x1,x2] = 2x2, [x1,x3] =−2x3.

The computations of the index using Proposition 4 lead to the following result.

Proposition 7. The index of n-dimensional Lie algebras with n < 5 is

χ
(
G 1

2
)

= 0,

χ
(
G i

3
)

= 1 for i = 1,2,3,4,

χ
(
G 1

4
)

= 0 if α 6=−1 and χ
(
G 1

4
)

= 2 if α =−1,

χ
(
G i

4
)

= 0 for i = 2,3, χ
(
G i

4
)

= 2 for i = 4, . . . ,9.

Proof. By direct computations we obtain:

Index of the 2-dimensional Lie algebra: The corresponding matrix of G 1
2 is

(
0 x2
−x2 0

)
.

Since its rank is 2, χ
(
G 1

2
)

= 0.
Index of 3-dimensional Lie algebras:

We make the computation for G 1
3 . The corresponding matrix is




0 x3 0
−x3 0 0

0 0 0


 .

It is of rank 2, then χ
(
G 1

3
)

= 1.

The corresponding matrices of Lie algebras G 2
3 , G 3

3 , G 4
3 are of rank 2, so the index is equal to 1.
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Index of 4-dimensional Lie algebras: We make the computation for G 1
4 . The corresponding matrix of

G 1
4 is 



0 x2 αx3 (1+α)x4
−x2 0 x4 0
−αx3 −x4 0 0

−(1+α)x4 0 0 0


 .

The determinant of this matrix is (1+α)2x2
4. Then it is of rank 4 if α 6=−1. When α 6=−1, the matrix is of

rank 2. Thus, χ
(
G 1

4
)

= 0 if α 6=−1 and χ
(
G 1

4
)

= 2 if α =−1.
In a similar way we find that the corresponding matrices for the Lie algebras G 2

4 , G 3
4 are of rank 4, so

their index is equal to 0, and the corresponding matrices for the Lie algebras G 4
4 , . . . ,G 9

4 are of rank 2, so their
index is equal to 2. Details of calculations can be found in [1]. ¤

4. INDEX OF NILPOTENT AND FILIFORM LIE ALGEBRAS

Let G be a Lie algebra. We set C 0G = G and C kG = [C k−1G ,G ], for k > 0. A Lie algebra G is said to
be nilpotent if there exists an integer p such that C pG = 0. The smallest p such that C pG = 0 is called the
nilindex of G . Then a nilpotent Lie algebra has a natural filtration given by the central descending sequence:
G = C 0G ⊇ C 1G ⊇ ·· ·C p−1G ⊇ C pG = 0.

We have the following characterization of nilpotent Lie algebras (Engel’s theorem).

Theorem 8. A Lie algebra G is nilpotent if and only if the operator adx is nilpotent for all x in G .

Example 9. We consider the generalized Heisenberg algebra, which is a (2n + 1)-dimensional Lie algebra
G given, with respect to a basis {x1,x2, . . . ,x2n+1}, by the following nontrivial brackets:

[x2i+1,x2i+2] = x2n+1; i = 0, . . . ,n−1.

The associated matrix of G is of the form



0 x2n+1 . . . 0 0 0
−x2n+1 0 . . . 0 0 0

...
...

...
...

...
...

0 0 . . . 0 x2n+1 0
0 0 . . . −x2n+1 0 0
0 0 . . . 0 0 0




.

This matrix is of rank 2n, then the index of G is χ (G ) = 1. The regular vectors are of the form
f = ∑2k

i=1 gix∗i + x∗2k+1.
In the study of nilpotent Lie algebras the filiform Lie algebras play an important role. This class was

introduced by Vergne [22]. An n-dimensional nilpotent Lie algebra is called filiform if its nilindex p = n−1.
The filiform Lie algebras are the nilpotent algebras with the largest nilindex. If G is an n-dimensional
filiform Lie algebra, we have dim C iG = n− i for 2≤ i≤ n.

Another characterization of filiform Lie algebras uses characteristic sequences c(G ) = sup{c(x) : x ∈
G \ [G ,G ]}, where c(x) is the sequence, in decreasing order, of dimensions of characteristic subspaces
of the nilpotent operator adx. Thus an n-dimensional nilpotent Lie algebra is filiform if its characteristic
sequence is of the form c(G ) = (n−1,1) .

The classification of filiform Lie algebras was given by Vergne ([22]) until dimension 6 and was
extended to dimension 11 by several authors (see [2,13,14,19]).

Throughout the classification of n-dimensional Lie algebra n < 5, there are only two isomorphic classes
of filiform Lie algebras, that is G 1

3 and G 8
4 , and their indexes are χ

(
G 1

3
)

= 1, χ
(
G 8

4

)
= 2.
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The 5-dimensional filiform Lie algebras are isomorphic to one of the following Lie algebras:

G 1
5 : [x1,xi] = xi+1, for i = 2,3,4,

G 2
5 : [x1,xi] = xi+1, for i = 2,3,4 and [x2,x3] = x5.

Their indexes are χ
(
G 1

5

)
= 3, χ

(
G 2

5

)
= 1. The regular vectors of G 1

5 are of the form f = g1x∗1 +g2x∗2 +
g(x∗3 + x∗4 + x∗5) with g 6= 0 and the regular vectors of G 2

5 are of the form f = (∑4
i=1 gix∗i )+ x∗5.

In the general case there are two classes Ln and Qn of filiform Lie algebras which play an important role
in the study of the algebraic varieties of filiform and more generally nilpotent Lie algebras.

Let {x1, . . . ,xn} be a basis of the K vector space Ln. The Lie algebra structure of Ln is defined by the
following nontrivial brackets:

[x1,xi] = xi+1, i = 2, . . . ,n−1. (1)

Let {x1, . . . ,xn=2k} be a basis of the K vector space Qn. The Lie algebra structure of Qn is defined by
the following nontrivial brackets:

[x1,xi] = xi+1, i = 2, . . . ,n−1,

[xi,xn−i+1] = (−1)i+1 xn, i = 2, . . . ,k, where n = 2k.
(2)

The classification of n-dimensional graded filiform Lie algebras yields two isomorphic classes Ln and Qn
when n is odd and only the Lie algebra Ln when n is even.

It turns out that any filiform Lie algebra is isomorphic to a Lie algebra obtained as a deformation of a
Lie algebra Ln.

We aim to compute the indexes of Ln and Qn and regular vectors.
Let {x1,x2, . . . ,xn} be a fixed basis of the vector space V = Ln (resp. V = Qn) and {x∗1, . . . ,x

∗
n} be a

basis of the dual space. Define the Lie algebra Ln (resp. Qn) with respect to the basis by the brackets (1)
(resp. (2)). Set f = ∑i≥0 gix∗i ∈ V∗.
Proposition 10. For n ≥ 3, the index of the n-dimensional filiform Lie algebra Ln is χ (Ln) = n− 2. The
regular vectors of Ln are of the form f = ∑n

i=1 gix∗i with one of gi 6= 0 where i ∈ {3, . . . ,n}.
Proof. Since the corresponding matrix to the Lie algebra Ln is of the form




0 x3 . . . xn 0
−x3 0 . . . 0 0

...
...

...
...

...
−xn 0 . . . 0 0

0 0 . . . 0 0




and its rank is 2, χ(Ln) = n−2. The second assertion is obtained by a direct calculation. ¤
Proposition 11. For n = 2k and k≥ 2, the index of the n-dimensional filiform Lie algebra Qn is χ (Qn) = 2.
The regular vectors of Qn are of the form f = ∑n

i=1 gix∗i with gn 6= 0.

Proof. Since the corresponding matrix to the Lie algebra Qn is of the form



0 x3 x4 . . . xn−1 xn 0
−x3 0 0 . . . 0 −xn 0
−x4 0 0 . . . xn 0 0

...
...

...
...

...
...

...
0 0 −xn . . . 0 0 0
−xn xn 0 . . . 0 0 0

0 0 0 0 0 0 0




and its rank is n−2, χ(Qn) = 2. The second assertion is obtained by a direct calculation. ¤
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5. INDEX AND DEFORMATIONS

We study now the evolution by deformation of the index of a Lie algebra. About deformation theory we
refer to [9–12] and [15]. Let V be a K-vector space and G0 = (V, [ , ]0) be a Lie algebra. Let K[[t]] be
the power series ring in one variable t and coefficients in K and V[[t]] be the set of formal power series
whose coefficients are elements of V. A formal Lie deformation of G0 is given by the K[[t]]-bilinear
map [ , ]t : V[[t]]×V[[t]] → V[[t]] of the form [ , ]t = ∑i≥0[ , ]it i, where each [ , ]i is a K-bilinear map
[ , ]i : V×V→ V, satisfying the skew-symmetry and the Jacobi identity.

Proposition 12. The index of a Lie algebra decreases by deformation.

Proof. The rank of the matrix ([Xi,X j])i j increases by deformation, consequently the index decreases. ¤

Corollary 13. The index of a filiform Lie algebra is less than or equal to n−2.

Proof. Any filiform Lie algebra N is obtained as a deformation of the Lie algebra Ln. Since χ (Ln) = n−2
using the previous lemma, one has χ (N )≤ n−2. ¤
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13. Gòmez, J. R., Jimenéz-Merchán, A., and Khakimdjanov, Y. Low-dimensional filiform Lie algebras. J. Pure Appl. Algebra,

1998, 130, 133–158.
14. Goze, M. and Khakimdjanov, Y. Nilpotent Lie Algebras. Kluwer Academic Publishers, MIA 361, 1996.
15. Makhlouf, A. Comparison of deformations and geometric study of associative algebras varieties. Int. J. Math. Math. Sci., 2007,

Article ID 18915, 24 pages.
16. Ooms, A. I. On Frobenius algebras. Commun. Algebra, 1980, 8, 13–52.
17. Ooms, A. I. Computing invariants and semi-invariants by means of Frobenius Lie algebras. 2008, arXiv:0806.4178 [math.RT].
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Lie algebrate indeksi arvutamine

Hadjer Adimi ja Abdenacer Makhlouf

Töö eesmärgiks on arvutada ja uurida Lie algebrate indeksit. On uuritud n-mõõtmelisi Lie algebraid, kui
n < 5, teatavate Lie algebrate korral (nn filiform-algebrad), mis moodustavad nilpotentsete Lie algebrate
alamklassi. On arvutatud üldistatud Heisenbergi algebrate ja gradueeritud filiform-algebrate indeks. Samuti
on uuritud Lie algebrate indeksi evolutsiooni deformatsioonevolutsiooni.


