

Proceedings of the Estonian Academy of Sciences, 2010, **59**, 4, 265–271 doi: 10.3176/proc.2010.4.03 Available online at www.eap.ee/proceedings

MATHEMATICS

Computing the index of Lie algebras

Hadjer Adimi^a and Abdenacer Makhlouf^{b*}

- ^a Centre universitaire de Bordj Bou Arreridj, Département de Mathématiques, Bordj Bou Arreridj, Algeria
- ^b Université de Haute Alsace, Laboratoire de Mathématiques, Informatique et Applications, 4, rue des Frères Lumière F-68093 Mulhouse, France

Received 17 April 2009, accepted 21 October 2009

Abstract. The aim of this paper is to compute and discuss the index of Lie algebras. We consider the *n*-dimensional Lie algebras for n < 5 and the case of filiform Lie algebras which form a special class of nilpotent Lie algebras. We compute the index of generalized Heisenberg algebras and graded filiform Lie algebras L_n and Q_n . We also discuss the evolution of the Lie algebra index by deformation.

Key words: Lie algebra, index, regular vector, deformation.

1. INTRODUCTION

The index theory of Lie algebras was intensively studied by Elashvili (see [5–8]), in particular the case of semi-simple Lie algebras and Frobenius Lie algebras. He classified all the algebraic Frobenius algebras up to dimension 6. In [3], the authors connect the computation of the index to combinatorial theory of meanders and evaluate the index of a Lie algebra of seaweed type, which is equal to the number of cycles in an associated permutation. The index of semi-simple Lie algebras was also studied in [21]. The authors of that paper consider a semi-simple Lie algebra \mathscr{G} with a Cartan subalgebra h, R its corresponding root system, π a base of R, and S, T subsets of π . They provide an upper bound for the index of $\mathscr{G}_{S,T}$, the direct sum of h, and the sum of the root spaces for the positive roots in the space spanned by S and the sum of the root spaces for the space spanned by T. They then verify that this inequality is actually an equality in a number of special cases and conjecture that equality holds in all cases. See also [20], where the index of a Borel subalgebra of a semi-simple Lie algebra is determined.

The aim of this paper is to compute the index of Lie algebras in low dimensions and in general for some special cases. In Section 2 we summarize the index theory of Lie algebras. Then, in Section 3, we recall the classification of *n*-dimensional Lie algebras for n < 5 and compute the indexes for all these Lie algebras. Section 4 is dedicated to nilpotent Lie algebras and specially to filiform Lie algebras. We consider the generalized Heisenberg Lie algebras and the two graded filiform Lie algebras L_n and Q_n . Notice that L_n plays an important role in the study of filiform and nilpotent Lie algebras. It is known that any *n*-dimensional filiform Lie algebra may be obtained by deformation of the one of the filiform Lie algebras L_n . In the last Section we study the evolution by deformation of the index of a Lie algebra. We prove that the index of a Lie algebra decreases by deformation.

^{*} Corresponding author, Abdenacer.Makhlouf@uha.fr

2. INDEX OF LIE ALGEBRAS

Throughout this paper \mathbb{K} is an algebraically closed field of characteristic 0. In this Section we summarize the index theory of Lie algebras.

Definition 1. A Lie algebra \mathscr{G} over \mathbb{K} is a pair consisting of a vector space $\mathbb{V} = \mathscr{G}$ and a skew-symmetric bilinear map $[,]: \mathscr{G} \times \mathscr{G} \to \mathscr{G} (x,y) \to [x,y]$ satisfying the Jacobi identity

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 \qquad \forall x, y, z \in \mathcal{G}.$$

Let $x \in \mathcal{G}$. We denote by *adx* the endomorphism of \mathcal{G} defined by $adx(y) = [x, y] \forall y \in \mathcal{G}$.

Let \mathbb{V} be a finite-dimensional vector space over \mathbb{K} provided with the Zariski topology, \mathscr{G} be a Lie algebra and \mathscr{G}^* its dual. Then \mathscr{G} acts on \mathscr{G}^* as follows:

where $\forall y \in \mathscr{G} : (x \cdot f)(y) = f([x, y])$.

Let $f \in \mathscr{G}^*$ and Φ_f be a skew-symmetric bilinear form defined by

$$\begin{array}{rcl} \Phi_f: \mathscr{G} \times \mathscr{G} & \to & \mathbb{K}, \\ (x,y) & \mapsto & \Phi_f(x,y) = f\left([x,y]\right) \end{array}$$

We denote the kernel of the map Φ_f by \mathscr{G}^f :

$$\mathscr{G}^f = \{ x \in \mathscr{G} : f([x, y]) = 0 \ \forall y \in \mathscr{G} \}.$$

Definition 2. The index of Lie algebra \mathscr{G} is the integer $\chi_{\mathscr{G}} = \inf \{ \dim \mathscr{G}^f; f \in \mathscr{G}^* \}$. A linear functional $f \in \mathscr{G}^*$ is called regular if $\dim \mathscr{G}^f = \chi_{\mathscr{G}}$. The set of all regular linear functionals is denoted by \mathscr{G}_r^* .

Remark 3. The set \mathscr{G}_r^* of all regular linear functionals is a nonempty Zariski open set.

Let $\{x_1, \ldots, x_n\}$ be a basis of \mathscr{G} . We can express the index using the matrix $([x_i, x_j])_{1 \le i < j \le n}$ as a matrix over the ring $S(\mathscr{G})$, (see [4]). We have the following proposition:

Proposition 4. The index of an n-dimensional Lie algebra \mathcal{G} is the integer

$$\chi_{\mathscr{G}} = n - \operatorname{Rank}_{R(\mathscr{G})} \left([x_i, x_j] \right)_{1 \le i \le j \le n},$$

where $R(\mathscr{G})$ is the quotient field of the symmetric algebra $S(\mathscr{G})$.

Remark 5. The index of an *n*-dimensional Abelian Lie algebra is *n*.

Definition 6. A Lie algebra \mathscr{G} over an algebraically closed field of characteristic 0 is said to be Frobenius if there exists a linear form $f \in \mathscr{G}^*$ such that the bilinear form Φ_f on \mathscr{G} is nondegenerate.

In [7] the author described all the Frobenius algebraic Lie algebras $\mathscr{G} = R + N$ whose nilpotent radical N is Abelian in the following two cases: the reductive Levi subalgebra R acts on N irreducibly; R is simple. He classified all the algebraic Frobenius algebras up to dimension 6. See also [16–18] for further computations.

3. LIE ALGEBRAS OF DIMENSION n < 5

In this section we compute the index of *n*-dimensional Lie algebras with n < 5. Let \mathscr{G} be an *n*-dimensional Lie algebra and $\{x_1, x_2, \ldots, x_n\}$ be a fixed basis of $\mathbb{V} = \mathscr{G}$.

Any *n*-dimensional Lie algebra with n < 5 is isomorphic to one of the following Lie algebras.

Dimension 2 $\mathscr{G}_{2}^{1}: [x_{1}, x_{2}] = x_{2}.$ Dimension 3 $\mathscr{G}_{3}^{1}: [x_{1}, x_{2}] = x_{3}.$ $\mathscr{G}_{3}^{2}: [x_{1}, x_{2}] = x_{2}, [x_{1}, x_{3}] = \alpha x_{3}, \alpha \neq 0.$ $\mathscr{G}_{3}^{2}: [x_{1}, x_{2}] = x_{2} + x_{3}, [x_{1}, x_{3}] = x_{3}.$ $\mathscr{G}_{3}^{4}: [x_{1}, x_{3}] = -2x_{2}, [x_{1}, x_{3}] = -2x_{3}.$ Dimension 4 $\mathscr{G}_{4}^{1}: [x_{1}, x_{2}] = x_{2} + x_{3}, [x_{1}, x_{3}] = x_{3}, [x_{1}, x_{4}] = (1 + \alpha) x_{4}, [x_{2}, x_{3}] = x_{4}.$ $\mathscr{G}_{4}^{2}: [x_{1}, x_{2}] = x_{2} + x_{3}, [x_{1}, x_{3}] = x_{3}, [x_{1}, x_{4}] = 2x_{4}, [x_{2}, x_{3}] = x_{4}.$ $\mathscr{G}_{4}^{3}: [x_{1}, x_{3}] = x_{3}, [x_{1}, x_{4}] = x_{4}, [x_{2}, x_{3}] = x_{4}.$ $\mathscr{G}_{4}^{3}: [x_{1}, x_{2}] = x_{2}, [x_{1}, x_{3}] = \alpha x_{3}, [x_{1}, x_{4}] = \beta x_{3}.$ $\mathscr{G}_{4}^{5}: [x_{1}, x_{2}] = \alpha x_{2}, [x_{1}, x_{3}] = x_{3} + x_{4}, [x_{1}, x_{4}] = x_{4}.$ $\mathscr{G}_{4}^{6}: [x_{1}, x_{2}] = x_{2} + x_{3}, [x_{1}, x_{3}] = x_{3} + x_{4}, [x_{1}, x_{4}] = x_{4}.$ $\mathscr{G}_{4}^{6}: [x_{1}, x_{2}] = x_{2}, [x_{1}, x_{3}] = x_{4}.$ $\mathscr{G}_{4}^{6}: [x_{1}, x_{2}] = x_{3}, [x_{1}, x_{4}] = x_{4}.$ $\mathscr{G}_{4}^{8}: [x_{1}, x_{2}] = x_{3}, [x_{1}, x_{3}] = x_{4}.$ $\mathscr{G}_{4}^{8}: [x_{1}, x_{2}] = x_{3}, [x_{1}, x_{3}] = x_{4}.$ $\mathscr{G}_{4}^{9}: [x_{1}, x_{2}] = x_{3}, [x_{1}, x_{3}] = -2x_{3}.$

The computations of the index using Proposition 4 lead to the following result.

Proposition 7. *The index of n-dimensional Lie algebras with* n < 5 *is*

$$\begin{split} \chi \left(\mathscr{G}_{2}^{1} \right) &= 0, \\ \chi \left(\mathscr{G}_{3}^{i} \right) &= 1 \ for \ i = 1, 2, 3, 4, \\ \chi \left(\mathscr{G}_{4}^{1} \right) &= 0 \ if \ \alpha \neq -1 \quad and \quad \chi \left(\mathscr{G}_{4}^{1} \right) = 2 \ if \ \alpha = -1, \\ \chi \left(\mathscr{G}_{4}^{i} \right) &= 0 \ for \ i = 2, 3, \quad \chi \left(\mathscr{G}_{4}^{i} \right) = 2 \ for \ i = 4, \dots, 9. \end{split}$$

Proof. By direct computations we obtain:

Index of the 2-dimensional Lie algebra: The corresponding matrix of \mathscr{G}_2^1 is $\begin{pmatrix} 0 & x_2 \\ -x_2 & 0 \end{pmatrix}$.

Since its rank is 2, $\chi(\mathscr{G}_2^1) = 0$.

Index of 3-dimensional Lie algebras:

We make the computation for \mathscr{G}_3^1 . The corresponding matrix is

$$\left(\begin{array}{rrrr} 0 & x_3 & 0 \\ -x_3 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

It is of rank 2, then $\chi(\mathscr{G}_3^1) = 1$.

The corresponding matrices of Lie algebras \mathscr{G}_3^2 , \mathscr{G}_3^3 , \mathscr{G}_3^4 are of rank 2, so the index is equal to 1.

Index of 4-dimensional Lie algebras: We make the computation for \mathscr{G}_4^1 . The corresponding matrix of \mathscr{G}_4^1 is

$$\begin{pmatrix} 0 & x_2 & \alpha x_3 & (1+\alpha)x_4 \\ -x_2 & 0 & x_4 & 0 \\ -\alpha x_3 & -x_4 & 0 & 0 \\ -(1+\alpha)x_4 & 0 & 0 & 0 \end{pmatrix}$$

The determinant of this matrix is $(1+\alpha)^2 x_4^2$. Then it is of rank 4 if $\alpha \neq -1$. When $\alpha \neq -1$, the matrix is of rank 2. Thus, $\chi(\mathscr{G}_4^1) = 0$ if $\alpha \neq -1$ and $\chi(\mathscr{G}_4^1) = 2$ if $\alpha = -1$.

In a similar way we find that the corresponding matrices for the Lie algebras \mathscr{G}_4^2 , \mathscr{G}_4^3 are of rank 4, so their index is equal to 0, and the corresponding matrices for the Lie algebras \mathscr{G}_4^4 , ..., \mathscr{G}_4^9 are of rank 2, so their index is equal to 2. Details of calculations can be found in [1].

4. INDEX OF NILPOTENT AND FILIFORM LIE ALGEBRAS

Let \mathscr{G} be a Lie algebra. We set $\mathscr{C}^0 \mathscr{G} = \mathscr{G}$ and $\mathscr{C}^k \mathscr{G} = [\mathscr{C}^{k-1} \mathscr{G}, \mathscr{G}]$, for k > 0. A Lie algebra \mathscr{G} is said to be nilpotent if there exists an integer p such that $\mathscr{C}^p \mathscr{G} = 0$. The smallest p such that $\mathscr{C}^p \mathscr{G} = 0$ is called the nilindex of \mathscr{G} . Then a nilpotent Lie algebra has a natural filtration given by the central descending sequence: $\mathscr{G} = \mathscr{C}^0 \mathscr{G} \supseteq \mathscr{C}^1 \mathscr{G} \supseteq \cdots \mathscr{C}^{p-1} \mathscr{G} \supseteq \mathscr{C}^p \mathscr{G} = 0$.

We have the following characterization of nilpotent Lie algebras (Engel's theorem).

Theorem 8. A Lie algebra \mathcal{G} is nilpotent if and only if the operator adx is nilpotent for all x in \mathcal{G} .

Example 9. We consider the generalized Heisenberg algebra, which is a (2n + 1)-dimensional Lie algebra \mathscr{G} given, with respect to a basis $\{x_1, x_2, \dots, x_{2n+1}\}$, by the following nontrivial brackets:

$$[x_{2i+1}, x_{2i+2}] = x_{2n+1}; \quad i = 0, \dots, n-1.$$

The associated matrix of \mathcal{G} is of the form

(0	x_{2n+1}		0	0	0	
	$-x_{2n+1}$	0		0	0	0	
	:	÷	÷	÷	÷	÷	
	0	0		0	x_{2n+1}	0	·
	0	0		$-x_{2n+1}$	0	0	
ĺ	0	0		0	0	0 /	

This matrix is of rank 2*n*, then the index of \mathscr{G} is $\chi(\mathscr{G}) = 1$. The regular vectors are of the form $f = \sum_{i=1}^{2k} g_i x_i^* + x_{2k+1}^*$.

In the study of nilpotent Lie algebras the filiform Lie algebras play an important role. This class was introduced by Vergne [22]. An *n*-dimensional nilpotent Lie algebra is called *filiform* if its nilindex p = n - 1. The filiform Lie algebras are the nilpotent algebras with the largest nilindex. If \mathscr{G} is an *n*-dimensional filiform Lie algebra, we have dim $\mathscr{C}^{i}\mathscr{G} = n - i$ for $2 \le i \le n$.

Another characterization of filiform Lie algebras uses characteristic sequences $c(\mathscr{G}) = \sup\{c(x) : x \in \mathscr{G} \setminus [\mathscr{G}, \mathscr{G}]\}$, where c(x) is the sequence, in decreasing order, of dimensions of characteristic subspaces of the nilpotent operator *adx*. Thus an *n*-dimensional nilpotent Lie algebra is filiform if its characteristic sequence is of the form $c(\mathscr{G}) = (n-1,1)$.

The classification of filiform Lie algebras was given by Vergne ([22]) until dimension 6 and was extended to dimension 11 by several authors (see [2,13,14,19]).

Throughout the classification of *n*-dimensional Lie algebra n < 5, there are only two isomorphic classes of filiform Lie algebras, that is \mathscr{G}_3^1 and \mathscr{G}_4^8 , and their indexes are $\chi(\mathscr{G}_3^1) = 1$, $\chi(\mathscr{G}_4^8) = 2$.

The 5-dimensional filiform Lie algebras are isomorphic to one of the following Lie algebras:

$$\mathscr{G}_{5}^{1}: [x_{1}, x_{i}] = x_{i+1}$$
, for $i = 2, 3, 4$,
 $\mathscr{G}_{5}^{2}: [x_{1}, x_{i}] = x_{i+1}$, for $i = 2, 3, 4$ and $[x_{2}, x_{3}] = x_{5}$.

Their indexes are $\chi(\mathscr{G}_5^1) = 3$, $\chi(\mathscr{G}_5^2) = 1$. The regular vectors of \mathscr{G}_5^1 are of the form $f = g_1 x_1^* + g_2 x_2^* + g(x_3^* + x_4^* + x_5^*)$ with $g \neq 0$ and the regular vectors of \mathscr{G}_5^2 are of the form $f = (\sum_{i=1}^4 g_i x_i^*) + x_5^*$.

In the general case there are two classes L_n and Q_n of filiform Lie algebras which play an important role in the study of the algebraic varieties of filiform and more generally nilpotent Lie algebras.

Let $\{x_1, \ldots, x_n\}$ be a basis of the \mathbb{K} vector space L_n . The Lie algebra structure of L_n is defined by the following nontrivial brackets:

$$[x_1, x_i] = x_{i+1}, \quad i = 2, \dots, n-1.$$
(1)

Let $\{x_1, \ldots, x_{n=2k}\}$ be a basis of the \mathbb{K} vector space Q_n . The Lie algebra structure of Q_n is defined by the following nontrivial brackets:

$$[x_1, x_i] = x_{i+1}, \quad i = 2, \dots, n-1,$$

$$[x_i, x_{n-i+1}] = (-1)^{i+1} x_n, \quad i = 2, \dots, k, \quad \text{where } n = 2k.$$
 (2)

The classification of *n*-dimensional graded filiform Lie algebras yields two isomorphic classes L_n and Q_n when *n* is odd and only the Lie algebra L_n when *n* is even.

It turns out that any filiform Lie algebra is isomorphic to a Lie algebra obtained as a deformation of a Lie algebra L_n .

We aim to compute the indexes of L_n and Q_n and regular vectors.

Let $\{x_1, x_2, ..., x_n\}$ be a fixed basis of the vector space $\mathbb{V} = L_n$ (resp. $\mathbb{V} = Q_n$) and $\{x_1^*, ..., x_n^*\}$ be a basis of the dual space. Define the Lie algebra L_n (resp. Q_n) with respect to the basis by the brackets (1) (resp. (2)). Set $f = \sum_{i>0} g_i x_i^* \in \mathbb{V}^*$.

Proposition 10. For $n \ge 3$, the index of the n-dimensional filiform Lie algebra L_n is $\chi(L_n) = n - 2$. The regular vectors of L_n are of the form $f = \sum_{i=1}^n g_i x_i^*$ with one of $g_i \ne 0$ where $i \in \{3, ..., n\}$.

Proof. Since the corresponding matrix to the Lie algebra L_n is of the form

$$\left(\begin{array}{cccccc} 0 & x_3 & \dots & x_n & 0 \\ -x_3 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -x_n & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \end{array}\right)$$

and its rank is 2, $\chi(L_n) = n - 2$. The second assertion is obtained by a direct calculation.

Proposition 11. For n = 2k and $k \ge 2$, the index of the n-dimensional filiform Lie algebra Q_n is $\chi(Q_n) = 2$. The regular vectors of Q_n are of the form $f = \sum_{i=1}^n g_i x_i^*$ with $g_n \ne 0$.

Proof. Since the corresponding matrix to the Lie algebra Q_n is of the form

(0	<i>x</i> ₃	x_4		x_{n-1}	x_n	0
	$-x_{3}$	0	0		0	$-x_n$	0
	$-x_4$	0	0	•••	x_n	0	0
	÷	÷	÷	÷	÷	÷	:
	0	0	$-x_n$		0	0	0
	$-x_n$	x_n	0		0	0	0
l	0	0	0	0	0	0	0 /

and its rank is n-2, $\chi(Q_n) = 2$. The second assertion is obtained by a direct calculation.

269

5. INDEX AND DEFORMATIONS

We study now the evolution by deformation of the index of a Lie algebra. About deformation theory we refer to [9–12] and [15]. Let \mathbb{V} be a \mathbb{K} -vector space and $\mathscr{G}_0 = (\mathbb{V}, [,]_0)$ be a Lie algebra. Let $\mathbb{K}[[t]]$ be the power series ring in one variable *t* and coefficients in \mathbb{K} and $\mathbb{V}[[t]]$ be the set of formal power series whose coefficients are elements of \mathbb{V} . A *formal Lie deformation* of \mathscr{G}_0 is given by the $\mathbb{K}[[t]]$ -bilinear map $[,]_t : \mathbb{V}[[t]] \times \mathbb{V}[[t]] \to \mathbb{V}[[t]]$ of the form $[,]_t = \sum_{i \ge 0} [,]_i t^i$, where each $[,]_i$ is a \mathbb{K} -bilinear map $[,]_i : \mathbb{V} \times \mathbb{V} \to \mathbb{V}$, satisfying the skew-symmetry and the Jacobi identity.

Proposition 12. The index of a Lie algebra decreases by deformation.

Proof. The rank of the matrix $([X_i, X_j])_{ii}$ increases by deformation, consequently the index decreases.

Corollary 13. The index of a filiform Lie algebra is less than or equal to n - 2.

Proof. Any filiform Lie algebra \mathcal{N} is obtained as a deformation of the Lie algebra L_n . Since $\chi(L_n) = n - 2$ using the previous lemma, one has $\chi(\mathcal{N}) \leq n - 2$.

REFERENCES

- 1. Adimi, H. Sur les indices des algèbres de Lie et algèbres associatives. Master's thesis, Sétif University, 2005.
- 2. Goze, M. and Ancochea-Bermudez, J.-M. On the varieties of nilpotent Lie algebras of dimension 7 and 8. J. Pure Appl. Algebra, 1992, 77, 131–140.
- 3. Dergachev, F. and Kirillov, A. Index of Lie algebras of seaweed type. J. Lie Theory, 2000, 10, 331-343.
- 4. Dixmier, J. Enveloping Algebras. Graduate Studies in Mathematics, Vol. 11, AMS, 1996.
- 5. Elashvili, A. G. On the index of parabolic subalgebras of semisimple Lie algebras. Preprint, 1990.
- 6. Elashvili, A. G. On the index of orisphorical subalgebras of semisimple Lie algebras. *Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR*, 1985, 77, 116–126.
- 7. Elashvili, A. G. Frobenius Lie algebras. *Funksional. Anal. i Prilozhen*, 1982, **16**, 94–95. English translation: *Functional Anal. Appl.*, 1982, **16**, 4 (1983), 326–328.
- 8. Elashvili, A. G. Frobenius Lie algebras II. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 1985, 77, 127-137.
- 9. Gerstenhaber, M. On the deformation of rings and algebras. *Ann. Math.*, 1964, **79**, 59–103.
- 10. Gerstenhaber, M. On the deformation of rings and algebras II. Ann. Math., 1966, 84, 1-19.
- 11. Gerstenhaber, M. On the deformation of rings and algebras III. Ann. Math., 1968, 88, 1–34.
- 12. Gerstenhaber, M. On the deformation of rings and algebras IV. Ann. Math., 1974, 99, 257-276.
- 13. Gòmez, J. R., Jimenéz-Merchán, A., and Khakimdjanov, Y. Low-dimensional filiform Lie algebras. J. Pure Appl. Algebra, 1998, **130**, 133–158.
- 14. Goze, M. and Khakimdjanov, Y. Nilpotent Lie Algebras. Kluwer Academic Publishers, MIA 361, 1996.
- 15. Makhlouf, A. Comparison of deformations and geometric study of associative algebras varieties. *Int. J. Math. Math. Sci.*, 2007, Article ID 18915, 24 pages.
- 16. Ooms, A. I. On Frobenius algebras. Commun. Algebra, 1980, 8, 13-52.
- 17. Ooms, A. I. Computing invariants and semi-invariants by means of Frobenius Lie algebras. 2008, arXiv:0806.4178 [math.RT].
- 18. Raïs, M. and Tauvel, P. Indice et polynômes invariants pour certaines algèbres de Lie. J. Reine Angew. Math., 1992, **425**, 123–140.
- 19. Seeley, C. 7-dimensional nilpotent Lie algebras. Trans. Amer. Math. Soc., 1993, 335, 479-496.
- 20. Tauvel, P. and Yu, R. W. T. Indice et formes linéaires stables dans les algèbres de Lie. J. Algebra, 2004, 273, 507-516.
- 21. Tauvel, P. and Yu, R. W. T. Sur l'indice de certaines algèbres de Lie. Ann. Inst. Fourier (Grenoble), 2004, 54, 1793-1810.
- Vergne, M. Cohomologie des algèbres de Lie nilpotentes. Application á l'étude de la variété des algèbres de Lie nilpotentes. Bull. Soc. Math. France, 1970, 98, 81–116.

Lie algebrate indeksi arvutamine

Hadjer Adimi ja Abdenacer Makhlouf

Töö eesmärgiks on arvutada ja uurida Lie algebrate indeksit. On uuritud *n*-mõõtmelisi Lie algebraid, kui n < 5, teatavate Lie algebrate korral (nn filiform-algebrad), mis moodustavad nilpotentsete Lie algebrate alamklassi. On arvutatud üldistatud Heisenbergi algebrate ja gradueeritud filiform-algebrate indeks. Samuti on uuritud Lie algebrate indeksi evolutsiooni deformatsioonevolutsiooni.