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Abstract. We propose a generalization of the concept of connection form by means of a graded q-differential algebra Ωq, where
q is a primitive Nth root of unity, and develop the concept of curvature N-form for this generalization of the connection form.
The Bianchi identity for a curvature N-form is proved. We study an Ωq-connection on module and prove that every projective
module admits an Ωq-connection. If the module is equipped with a Hermitian structure, we introduce a notion of an Ωq-connection
consistent with the Hermitian structure.
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1. INTRODUCTION

It is well known that the concepts of connection and its curvature are basic elements of the theory of fibre
bundles and play an important role not only in modern differential geometry, but also in modern theoretical
physics, namely in the gauge field theory. The development of a theory of connections has been closely
related to the development of theoretical physics. The advent of supersymmetric field theories in the 1970s
gave rise to interest towards Z2-graded structures which became known in theoretical physics under the
name of superstructures. This direction of development has led to the concept of superconnection which
appeared in [12]. The emergence of noncommutative geometry in the 1980s was a powerful spur to the
development of the theory of connections on modules [5,6,9,11]. A basic concept used in the theory of
connections on modules is the notion of graded differential algebra. This notion has been generalized to the
notion of graded q-differential algebra, where q is a primitive Nth root of unity (see papers [7,8,10]).

In Section 2 and Section 3 we give a short overview of N-structures, such as N-differential module,
cochain N-complex, generalized cohomologies of an N-complex, and graded q-differential algebra. In
Section 4 we introduce the notion of connection form in a graded q-differential algebra and covariant
N-differential, which can be viewed as analogues of the connection form in a graded differential algebra
described in [13]. In order to study the structure of a connection form in a graded q-differential algebra,
we introduce an algebra of polynomials in the variables d,a1,a2, . . . and prove the power expansion formula
for an nth power of the operator d̂a = d̂+ a1. Applying this formula, we show that the Nth power of the
covariant N-differential is the operator of multiplication by an element F(N)

A , which we then define as the
curvature N-form of a connection form A. We also study the concept of Ωq-connection on module, where
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Ωq is a graded q-differential algebra, introduced in [2–4], and define the notions, such as dual Ωq-connection
and Ωq-connection consistent with the Hermitian structure of a module.

2. N-COMPLEX

Let K be a commutative ring with a unit and E be a left K-module. The module E, endowed with an
endomorphism d satisfying d2 = 0, is referred to as a differential module and an endomorphism d as
its differential. If K is a field, then the differential module E will be referred to as a differential vector
space. From the property of the differential d2 = 0 it follows that Imd ⊂ Kerd and one can measure
the non-exactness of the sequence E d→ E d→ E by the quotient module H(E) = Kerd/Imd, which is
referred to as the homology of the differential module E. Let E,F be differential modules, respectively with
differentials d,d′. A homomorphism of differential modules is a homomorphism of modules φ : E // F
satisfying φ ◦d = d′ ◦φ . Obviously φ (Imd)⊂ Imd′, φ (Kerd)⊂Kerd′, and φ induces the homomorphism
φ∗ : H(E) // H(F) in homology. Given an exact sequence of differential modules

0→E
φ→ F

ψ→ G→ 0,

one can construct a homomorphism ∂ : H(G)→ H(E) such that the triangle

H(E) H(G)oo
∂
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(1)

is exact [8].
A cochain complex is a Z-graded differential module E = ⊕i∈ZE i whose differential d has degree 1,

which means d : En → En+1. The homology H(E) of a cochain complex inherits a Z-graded structure of the
cochain complex E. Hence H(E) =⊕i∈ZH i(E), where H i(E) = Kerd∩E i/Imd∩E i, and H(E) is usually
referred to as a cohomology of the cochain complex E. Given an exact sequence of cochain complexes

0→E
φ→ F

ψ→ G→ 0,

one can construct by means of (1) the following exact sequence:

. . .
∂→ Hn(E)

φ∗→ Hn(F)
ψ∗→ Hn(G) ∂→ Hn+1(E)→ . . .

Let N ≥ 2 be a positive integer. The left K-module E is said to be an N-differential module with N-
differential d if d is an endomorphism of E satisfying dN = 0. Obviously, an N-differential module can
be viewed as a generalization of the concept of differential module to any integer N ≥ 2. If K is a field, an
N-differential module will be referred to as an N-differential vector space.

For each integer m with 1 ≤ m ≤ N − 1 we can define the submodules Zm(E) = Ker(dm) and
Bm(E) = Im(dN−m). It follows from the equation dN = 0 that Bm(E) ⊂ Zm(E) and the quotient modules
Hm(E) := Zm(E)/Bm(E) are called the (generalized) homology of the N-differential module E. As in the
case of the homology of a differential module, one can prove a proposition analogous to (1), which asserts

that if 0→E
φ→ F

ψ→G→ 0 is an exact sequence of N-differential modules, then there exist homomorphisms
∂ : Hm(G) //HN−m(E) for m∈ {1,2, . . . ,N−1} such that the following hexagons of homomorphisms
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H(n)(F)
ψ∗ // H(n)(G)

∂

&&MMMMMMMMMM

H(n)(E)

ϕ∗
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H(N−n)(E)

ϕ∗xxqqqqqqqqqq

H(N−n)(G)
∂

eeLLLLLLLLLL

H(N−n)(F)
ψ∗oo

are exact for n ∈ {1,2, . . . ,N − 1} [8]. A cochain N-complex of modules or simply an N-complex is a
Z-graded N-differential module E = ⊕k∈ZEk with a homogeneous N-differential d of degree 1. If E is an
N-complex, then its cohomologies Hm(E) are Z-graded modules, i.e. Hm(E) =⊕n∈ZHn

m(E), where

Hn
m(E) = Ker(dm : En // En+m)/dN−m(En+m−N).

It should be noted that many notions related to N-complexes depend only on the underlying ZN-graduation.
For this purpose we define a ZN-complex to be a ZN-graded N-differential module with N-differential d of
degree 1.

3. GRADED q-DIFFERENTIAL ALGEBRA

Let Ω =⊕n∈ZΩn be a unital associative gradedC-algebra. The subspace of elements of grading zero Ω0⊂Ω
is the subalgebra of Ω, which we denote by A, i.e. A = Ω0. Any subspace Ωk ⊂ Ω of elements of grading
k ∈ Z is the A-bimodule. A graded differential algebra is a unital associative graded C-algebra equipped
with a linear mapping d of degree 1 such that the sequence

. . .
d→Ωk−1 d→Ωk d→Ωk+1 d→ . . .

is a cochain complex and d is an antiderivation, i.e. it satisfies the graded Leibniz rule

d(ω ·θ) = dω ·θ +(−1)kω ·dθ ,

where ω ∈ Ωk,θ ∈ Ω. Let us mention that if Ω is a graded differential algebra, then Kerd is the graded
unital subalgebra of Ω, whereas Imd is the graded two-sided ideal of Kerd, so the cohomology H(Ω) is the

unital associative graded algebra. Obviously A
d→ Ω1 is a first-order differential calculus over the algebra

A. In what follows we shall call Ω a differential calculus over the algebra A.
Making use of the notion of N-complex described in the previous section, one can generalize the concept

of graded differential algebra [8,10]. Let K be the field of complex numbers C and q be a primitive Nth
root of unity, where N ≥ 2. A graded q-differential algebra is a unital associative Z-graded (ZN-graded)
C-algebra Ωq =⊕kΩk

q endowed with a linear mapping d of degree one such that the sequence

. . .
d→Ωk−1

q
d→Ωk

q
d→Ωk+1

q
d→ . . .

is an N-complex with N-differential d satisfying the graded q-Leibniz rule

d(ω ·θ) = dω ·θ +qkω ·dθ ,

where ω ∈Ωk
q,θ ∈Ωq. As in the case of a graded differential algebra, the subspace of elements of grading

zero A = Ω0
q is the subalgebra of the graded q-differential algebra Ωq. By analogy with the terminology
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used in the case of a graded differential algebra, we shall call Ωq a q-differential calculus over the algebra
A. Let us mention that d : A // Ω1

q is a first-order differential calculus over the algebra A.
Let us remind that a q-graded centre of an associative unital graded C-algebra A = ⊕k∈ZA k is the

graded subspace Z(A ) =⊕k∈ZZk(A ) of A generated by the homogeneous elements v ∈A k, where k ∈ Z,
satisfying vw = qkmwv for any w∈A m, m∈Z. The graded q-centre Z(A ) is the graded subalgebra of A . A
graded q-derivation of degree k ∈Z of A is a homogeneous linear mapping D : A m //A m+k satisfying the
graded q-Leibniz rule D(vw) = D(v)w +qkmvD(w), where v ∈A m. If v ∈A k is a homogeneous element,
then v determines the graded q-derivation of degree k by means of a graded q-commutator as follows:
adq(v)w = [v,w]q = vw−qkmwv, where w ∈A m, and adq(v) is called an inner graded q-derivation of degree
k of A .

It is proved in [1] that if A is an associative unital graded C-algebra and v is an element of grading
one of this algebra satisfying vN ∈ Z(A ), where N ≥ 2, then the inner graded q-derivation dv = adq(v) :
A k // A k+1 is the N-differential of an algebra A and A is the graded q-differential algebra with respect
to d. Making use of this theorem, we can endow a generalized Clifford algebra with a structure of graded
q-differential algebra. Indeed, let us remind that a generalized Clifford algebra CN

p is an associative unital
C-algebra generated by γ1,γ2, . . . ,γp, which are subjected to the relations

γiγ j = qsg( j−i)γ jγi, γN
i = 1, i, j = 1,2, . . . , p,

where 1 is the identity element of CN
p . If we assign grading zero to the identity element 1 and grading one

to each generator γi, then CN
p becomes the ZN-graded algebra. It is easy to verify that the Nth power of any

linear combination of generators v = ∑µ λµγµ ,λµ ∈C belongs to the graded q-centre of CN
p , i.e. vN ∈ Z(CN

p ).
Hence, dv = adq(v) is the N-differential of CN

p and CN
p is the graded q-differential algebra.

4. GENERALIZATION OF CONNECTION

In this section we propose a generalization of the concept of connection form and connection on a module
by means of the notion of graded q-differential algebra [2–4]. We begin with an algebra of polynomials on
two variables, which we will use later to prove propositions describing the structure of the curvature of a
connection form.

Let P[d,a] be the algebra of polynomials in d,a1,a2, . . . with coefficients in C and the variables
d,a1,a2, . . . be subjected to the relations

dai = qaid+ai+1, i = 1,2, . . . , (2)

where q is a complex number. Let P[d] be the subalgebra of P[d,a], generated by the variable d, and P[a]
be the subalgebra of P[d,a], freely generated by the variables a1,a2, . . . ,an, . . . . We equip the algebra of
polynomials P[d,a] with the N-graduation, by assigning grading one to the generator d and grading i to the
generator ai. It should be mentioned that this N-graded structure of P[d,a] induces the N-graded structures
on the subalgebras P[d],P[a]. We will call P[d,a] the N-reduced algebra of polynomials and denote it by
PN [d,a] if q is a primitive Nth root of unity and d obeys the additional relation dN = 0. It can be shown by
means of (2) that if q is a primitive Nth root of unity and dN = 0, then an = 0 for any integer n≥ N. Indeed,
making use of the commutation relations (2), we can express any variable an,n≥ 2, in terms of d,a1 as the
polynomial

an = ∑
k+m=n

(−1)mq
(m+1)m

2

[
n
m

]

q
dka1d

m. (3)

If n = N in (3), then the first and last terms in (3) vanish because of dN = 0; other terms are zero because of
the vanishing of q-binomial coefficients, provided q is a primitive Nth root of unity. Hence, aN = 0, and the
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N-reduced algebra of polynomials PN [d,a] is an algebra over C generated by d,a1,a2, . . . ,aN−1, which are
subjected to the commutation relations

da1 = qa1d+a2,

da2 = q2 a2d+a3,

· · ·
daN−2 = qN−1 aN−2d+aN−1,

daN−1 = aN−1d,

and dN = 0. We denote by PN [a] the subalgebra of PN [d,a] generated by a1,a2, . . . ,aN−1.
Let us consider the algebra P[d,a] and its subalgebra P[a] generated by ai, i ≥ 1. We assign a linear

operator d̂ : P[a] //P[a] to the generator d by putting

d̂(1) = 0, d̂(ai) = ai+1, d̂(aia j) = ai+1a j +qiaia j+1.

Evidently d̂ is the graded q-differential on the subalgebra P[a], i.e. d̂ satisfies the graded q-Leibniz rule
with respect to N-graded structure of P[a]. It is easy to see that in the case of the N-reduced algebra of
polynomials PN [d,a], the Nth power of d̂ : PN [a] //PN [a] is zero, i.e. d̂N = 0. Hence, PN [a] is the graded
q-differential algebra and d̂ is its N-differential.

Now, for any integer n ≥ 1 we define the polynomials p(n) ∈ P[d,a], f (n)
a ∈ P[a] and the operator

d̂a : P[a] //P[a] of grading one by

p(n) = (d+a1)n, f (k+1)
a = d̂k

a(a1), d̂a(p) = d̂(p)+a1 p, ∀p ∈P[a]. (4)

For the first values of k the straightforward computation of polynomials f (k)
a by means of the recurrent

relation f (k+1)
a = d̂a( f (k)

a ) gives

f (2)
a = a2 +a2

1, (5)

f (3)
a = a3 +a2 a1 +[2]q a1 a2 +a3

1, (6)

f (4)
a = a4 +a3 a1 +[3]q a1a3 +[3]q a2

2

+a2a2
1 +[3]q a2

1a2 +[2]q a1a2a1 +a4
1, (7)

f (5)
a = a5 +a4a1 +[4]q a1a4 +[4]q a3a2

+
[

4
2

]

q
a2a3 +a3a2

1 +[3]q a2
2a1 +[4]q a2a1a2

+[2]q [4]q a1a2
2 +

[
4
2

]

q
a2

1a3 +[3]q a1a3a1

+[2]q a1a2a2
1 +[3]q a2

1a2a1 +a2a3
1 +[4]q a3

1a2 +a5
1. (8)

We assign the operator p̂(n) : P[a] // P[a] to the polynomial p(n), replacing the variable d in p(n) by the
operator d̂. Evidently, p̂(n) = d̂n

a and f (n+1)
a = p̂(n)(a1). Our aim now is to find a power expansion for

polynomials p(n) with respect to variables d,a1,a2, . . . ,an. It is obvious that making use of the commutation
relations (2), we can rearrange the factors in each summand of this expansion by removing all d’s to the
right.

Theorem 4.1. Each polynomial p(n) can be expanded with respect to variables of the algebra P[d,a] as
follows:

p(n) = ∑
k+m=n

[
n
k

]

q
f (m)
a dk = dn +[n]q f (1)

a dn−1 + . . .+[n]q f (n−1)
a d+ f (n)

a ,
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where f (n)
a = p̂(n−1)(a1). In the case of N-reduced algebra of polynomials PN [d,a], the operator p̂(N) = d̂N

a :
PN [a] //PN [a], induced by the polynomial p(N), is the operator of multiplication by f (N)

a .

Let Ωq be a ZN-graded q-differential algebra with N-differential d, where q is an Nth primitive root of
unity, and A = Ω0

q be the subalgebra of elements of grading zero. We will call an element of grading one
A ∈ Ω1

q a connection form in a graded q-differential algebra Ωq. Since d is an N-differential, which means
that dn 6= 0 for 1 ≤ n ≤ N− 1, if we successively apply it to a connection form A, we get the sequence of
elements A,dA,d2A, . . . ,dN−1A, where dnA ∈ Ωn+1

q . Let us denote by Ωq[A] the graded subalgebra of Ωq

generated by A,dA,d2A, . . . ,dN−1A. The linear operator of degree one dA = d + A : Ωi // Ωi+1 will be
called a covariant N-differential induced by a connection form A. For any integer n = 1,2, . . . ,N we define
the polynomial F(n)

A ∈Ωq[A] by the formula F(n)
A = dn−1

A (A).
Now we apply the N-reduced algebra of polynomials PN [d,a], constructed above to study the structure

of a k th power of the covariant N-differential dA. Indeed, it is easy to see that we can identify an N-
differential d in Ωq with the variable d in PN [d,a], a connection form A in Ωq with the variable a1 in PN [d,a]
and dnA ∈Ωq with an+1 ∈PN [d,a]. Then the commutation relations (4) between d,ai are equivalent to the
graded q-Leibniz rule for an N-differential d, and f (n)

a can be identified with F(n)
A . Consequently, from

Theorem 4.1 we obtain

Proposition 4.2. For any integer 1≤ n≤N the nth power of the covariant N-differential dA can be expanded
as follows:

(dA)n = ∑
k+m=n

[
n
k

]

q
F(m)

A dk = dn +[n]qF(1)
A dn−1 + . . .+[n]qF(n−1)

A d +F(n)
A ,

where F(n)
A = (dA)n−1(A). Particularly, if n = N, then the Nth power of the covariant N-differential dA is

the operator of multiplication by the element F(N)
A of degree zero.

Proposition 4.2 allows us to define the curvature of a connection form A as follows.

Definition 4.3. The curvature N-form of a connection form A is the element of grading zero F(N)
A ∈ A.

It is easy to see that in the particular case of a graded differential algebra (N = 2,q =−1) with differential
d satisfying d2 = 0 the above definition yields a connection form A and its curvature F(2)

A = dA + A2 as
elements of a graded differential algebra, respectively, of grading one and two [13].

Proposition 4.4. For any connection form A in a graded q-differential algebra Ωq the curvature N-form
F(N)

A satisfies the Bianchi identity

dF(N)
A +[A,F(N)

A ]q = 0.

Proof. Indeed, we have

dF(N)
A +[A,F(N)

A ]q = dF(N)
A +AF(N)

A −qN F(N)
A A

= (dA)F(N)
A −F(N)

A A

= (dA)
(
(dA)N−1A

)
−F(N)

A A

= (dA)NA−F(N)
A A = F(N)

A A−F(N)
A A = 0. ¤
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From (5)–(8) we obtain the expressions for curvature form

F(2)
A = dA+A2,

F(3)
A = d2A+dAA+[2]q AdA+A3,

F(4)
A = d3A+(d2A)A+[3]q A(d2A)+ [3]q (dA)2

+dAA2 +[3]q A2 dA+[2]q AdAA+A4,

F(5)
A = d4A+(d3A)A+[4]q A(d3A)+ [4]q (d2A)dA

+
[

4
2

]

q
dA(d2A)+(d2A)A2 +[3]q (dA)2 A

+[4]qdAAdA+[2]q [4]qA(dA)2 +
[

4
2

]

q
A2 d2A

+[3]qAd2AA+[2]qAdAA2 +[3]qA2 dAA

+dAA3 +[4]qA3 dA+A5.

Let A be a unital associative C-algebra and Ω be a differential calculus over A, i.e. Ω is a graded
differential algebra Ω = ⊕kΩk with Ω0 = A and differential d. Let E be a left module over algebra A. It
is evident that E has the structure of C-vector space induced by a left A-module structure if one defines
αξ = (α e)ξ , where α ∈ C,ξ ∈ E , e is the identity element of algebra A. Let us remind [9] that an
Ω-connection on module E is a linear map ∇ : E // Ω1⊗A E satisfying the condition

∇(ωξ ) = dω⊗A ξ +ω∇(ξ ),

where ω ∈ A, ξ ∈ E . Since Ωk can be viewed as the (A,A)-bimodule, the tensor product Ω1⊗A E has the
structure of the left A-module. Let us denote F = Ω⊗A E . Obviously, F is the left Ω-module and also a
graded left A-module, i.e. F = ⊕kF

k, where F k = Ωk⊗A E . One can extend an Ω-connection ∇ to any
Ωk⊗A E by means of the formula

∇(ω⊗A ξ ) = dω⊗A ξ +(−1)kω∇(ξ ),

where ω ∈Ωk, ξ ∈ E .
Let Ωq be a graded q-differential algebra with N-differential d. In order to generalize the notion of

Ω-connection, we define as in [2–4] an Ωq-connection ∇q on the left Ωq-module Ωq⊗AE as a linear operator
of degree one satisfying the condition

∇q(ω⊗A ξ ) = dω⊗A ξ +q|ω|ω∇q(ξ ),

where ω ∈ Ωk
q, ξ ∈ E , and |ω| is the grading of the homogeneous element of algebra Ωq. Analogously, if

G is a right A-module, we define an Ωq-connection on G as a linear map ∇q : G // G ⊗A Ω1
q such that

∇q(ξ f ) = ξ ⊗A d f +∇q(ξ ) f for any ξ ∈ G , f ∈ A.
The tensor product F = Ωk

q⊗CE of vector spaces is the gradedC-vector space. Let us denote the vector
space of linear operators on F by L(F ). The graded structure of the vector space F induces a graduation
on the vector space L(F ) =⊕kL

k(F ). If A : F // F is a homogeneous linear operator, we can extend it
to the linear operator LA : L(F ) //L(F ) on the graded algebra of linear operators L(F ) by means of the
graded q-commutator as follows:

LA(B) = [A,B]q = A ·B−q|A||B|B ·A,
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where B is a homogeneous linear operator and A ·B is the product of two linear operators. It can be shown
that the Nth power of any Ωq-connection ∇q is the endomorphism of degree N of the left Ωq-module F .
The proof is based on the formula

∇k
q(ω⊗A ξ ) =

k

∑
m=0

qm|ω|
[

k
m

]

q
dk−mω ∇m

q (ξ ),

where ω ∈Ωq, ξ ∈ E . This allows us to define the curvature of an Ωq-connection ∇q as the endomorphism
F = ∇N

q of degree N of the left Ω-module F .
Let E be a left A-module. The set of all homomorphisms of E into A has the structure of the dual

module of the left A-module E , and is denoted by E ∗. It is easy to see that E ∗ is a right A-module. If ∇q is
an Ωq-connection on E , then a linear map ∇∗

q : E ∗ //E ∗⊗A Ω1
q defined as

∇∗
q(η)(ξ ) = d(η(ξ ))−η(∇q(ξ )),

where ξ ∈ E , η ∈ E ∗, is an Ωq-connection on the right module E ∗. Indeed, for any f ∈ A, η ∈ E ∗, ξ ∈ E ,
we have

∇∗
q(η f )(ξ ) = d(η f (ξ ))− (η f )(∇qξ ) = d(η(ξ ) f )−η(∇qξ ) f

= d(η(ξ )) f +η(ξ )⊗A d f −η(∇qξ ) f = η(ξ )⊗A d f +∇∗
q(η(ξ )) f .

In order to define a Hermitian structure on a right A-module E , we assume A to be a graded q-differential
algebra with involution ∗ such that the largest linear subset contained in the convex cone C ∈A generated by
a∗a is equal to zero, i.e. C∩ (−C) = 0. The right A-module E is called a Hermitian module if E is endowed
with a sesquilinear map h : E ×E //A which satisfies

h(ξ ω,ξ ω ′) = ω∗h(ξ ,ξ ′)ω ′, ∀ω,ω ′ ∈ A, ∀ξ ,ξ ′ ∈ E ,
h(ξ ,ξ ) ∈C, ∀ξ ∈ E , and h(ξ ,ξ ) = 0 ⇒ ξ = 0.

We have used the convention for a sesquilinear map to take the second argument to be linear. If E is a
Hermitian right A-module, an Ωq-connection ∇q on E is said to be consistent with a Hermitian structure of
E if it satisfies

dh(ξ ,ξ ′) = h(∇q(ξ ),ξ ′)+h(ξ ,∇q(ξ ′)),

where ξ ,ξ ′ ∈ E .
In analogy with the theory of Ω-connection [9] we can prove that there is an Ωq-connection on every

projective module. For this we need the following proposition.

Proposition 4.5. If E = A⊗V is a free A-module, where V is a C-vector space, then ∇q = d⊗ IV is an
Ωq-connection on E and this connection is flat, i.e. its curvature vanishes.

Proof. Indeed, ∇q : A⊗V // Ω1
q⊗ (A⊗V ) and

∇q( f (g⊗ v)) = (d⊗ IV )( f (g⊗ v)) = d( f g)⊗ v
= (d f g)⊗ v+ f (dg⊗ v) = d f ⊗A (g⊗ v)+ f ∇q(g⊗ v),

where f ,g ∈ A, v ∈V. As dN = 0 and q is the primitive Nth root of unity, we get

∇N
q ( f (g⊗ v)) = ∑

k+m=N

[
N
m

]

q
dk f (dmg⊗ v) = 0,

i.e. the curvature of such an Ωq-connection vanishes. ¤
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Theorem 4.6. Every projective module admits an Ωq-connection.

Proof. Let M be a projective module. From the theory of modules it is known that a module M is projective
if and only if there exists a module N such that E = M ⊕N is a free module. It is well known that a free
left A-module E can be represented as the tensor product A⊗V, where V is a C-vector space. A linear map
∇q = π ◦ (d⊗ IV ) : M // Ω1

q⊗A M is an Ωq-connection on a projective module M , where d⊗ IV is an
Ωq-connection on a left A-module E , π is the projection on the first summand in the direct sum M ⊕N ,
and π(ω⊗A (g⊗v)) = ω⊗A π(g⊗v) = ω⊗A m, where ω ∈Ω1

q, g ∈A, v ∈V, m ∈M . Taking into account
Proposition 4.5, we get

∇q( f m) = π((d⊗ IV )( f m)) = π(d f ⊗A m+ f dm)
= d f ⊗A π(m)+ f ∇q(m) = d f ⊗A m+ f ∇q(m),

where f ∈ A, m ∈M . ¤
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Gradueeritud q-diferentsiaalalgebrale tuginev seostuse üldistus

Viktor Abramov ja Olga Liivapuu

On sisse toodud seostuse vormi üldistus, mis tugineb gradueeritud q-diferentsiaalalgebrale, kus q on
N-astme algjuur ühest, ja välja töötatud kõveruse N-vormi mõiste. On tõestatud Bianchi samasus kõveruse
N-vormi jaoks. On uuritud Ωq-seostust moodulil ja tõestatud, et igal projektiivsel moodulil eksisteerib Ωq-
seostus. On defineeritud Hermite’i struktuuriga kooskõlaline Ωq-seostus, kui moodulil on antud Hermite’i
struktuur.


