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Abstract. This study investigated polycyclic aromatic hydrocarbons (PAHs) 
and hydrocarbon oil index (HOI) pollution in the soil on the territories of 
two former primitive asphalt pavement plants (APPs) in Estonia. The standard 
quantitative methods for the chemical characterisation of the oils consisted 
of an initial screening, by using a gas chromatography-flame ionization 
detector (GC-FID), and, for a more detailed analysis, of gas chromatography-
mass spectrometry (GC-MS). A combination of chemometric and analytical 
methods was used to identify the sources of PAHs, which could be attributed 
to the soil pollution at the plants. The identification and classification of oil 
spills were performed using chemometric techniques, such as the principal 
component analysis (PCA) and the clustering analysis (CA), which is based on 
Jaccard similarity. The application of the chemometric techniques enabled the 
clustering and discrimination of polluted soils into four groups, according to 
oil type. Several different methods of CA, such as single, complete and average 
linkages, were tested and the results were compared.
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1. Introduction

Residual pollution is still a crucial environmental problem in Estonia and its 
clean-up has been too slow. Any assessment of pollution includes a subsequent 
and constant monitoring of carefully selected parameters, which give 
information about the contamination size and risks to the groundwater, surface 
water, air and soil. According to the Estonian Ministry of the Environment, the 
most serious past contamination was detected in the soil at former primitive 
asphalt pavement plants (APPs). The main sources of contamination were old 
oils, which were spilt into the soil. At the moment, there are approximately 30 
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unclean asphalt pavement plants on the territory of Estonia [1–3].
For the identification of oil pollution the most commonly analysed 

compounds found in the soil are polycyclic aromatic hydrocarbons (PAHs), 
volatile organic compounds (benzene, toluene, ethylbenzene and three xylene 
isomers), polychlorinated biphenyls (PCBs), heavy metals and hydrocarbon 
oil index (HOI). The U.S. Environmental Protection Agency (EPA) has 
reported 16 PAH compounds (Fig. 1) as being priority pollutants, including 
naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Acp), fluorene 
(Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Fla), pyrene (Pyr), 
chrysene (Chr), benz(a)anthracene (B(a)Ant), benzo(b)fluoranthene (B(b)F), 
benzo(k)fluoranthene (B(k)F), benzo(a)pyrene (B(a)P), benzo(g,h,i)perylene 
(B(g,h,i)P), dibenz(a,h)anthracene (DiAnt) and indeno(1,2,3-cd)pyrene (Ind) 
[4, 5].

PAHs are important to be determined because of their possible toxic, 
carcinogenic and mutagenic properties. These compounds are released into 
the atmosphere during the incomplete combustion of organic materials (e.g. 
coal, oil, petrol, wood) and they are then precipitated onto the soil. In the soil, 
or in sediments, they tend to adsorb tightly onto suspended particulate matter 

Fig. 1. The chemical structure of 16 EPA-reported PAHs [6].
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[7–9]. The source of PAHs contamination in the soil can be pyrogenic, being 
caused or produced by combustion of heat fuels, or petrogenic, relating to the 
origin or formation of rocks. PAH diagnostic (binary) ratios can be applied to 
tracing out the sources of contamination in polluted areas [10, 11].

The hydrocarbon oil index is defined as the total amount of hydrocarbons 
which can be extracted from the sample by a non-polar solvent and then eluted 
between n-decane (C10H24) and n-tetracontane (C40H82) on an apolar capillary 
gas chromatographic (GC) column. The analysis of HOI is performed using 
a gas chromatography-flame ionization detector (GC-FID). The general 
term “mineral oil” comprises petroleum products, with a complex mixture 
of hydrocarbons, which can be found in diesel, kerosene, home heating oils, 
heavy fuel oils, transformer oil and lubricants. Due to the widespread use 
of mineral oils, these petroleum hydrocarbons are the most common organic 
contaminants in the soil and sediments, especially at former industrial and 
military sites. The said hydrocarbons can contaminate water or be consumed 
by organisms that can enter the human food chain [4, 12–14].

For oil hydrocarbon fingerprinting, the pollution source identification is 
based on chromatographic methods, which are the most effective for this 
purpose [15]. Gas chromatography-flame ionization detection (GC-FID) is a 
technique which is used for an initial screening. Gas chromatography-mass 
spectrometry (GC-MS) gives information about the content of oil and it is able 
to separate compounds in complex mixtures [15, 16].

The analytical methods generate a large amount of data, which is 
sometimes difficult to interpret. The multivariate statistical methods, like 
the principal component analysis (PCA) and the cluster analysis (CA), give 
a better resolution and a more adept separation quality of the samples. The 
chemometric methods extract the hidden information, to individualise and 
classify the samples into groups. The chemometric approach, together with 
the chromatographic methods, can help to identify and classify the soil, based 
on the type of contamination. Various statistical and numerical software 
programs (SPSS, R, MATLAB, Minitab and Excel Stat) are used to simplify 
these processes [17–19].

The principal component analysis decomposes the matrix into products of 
the scores matrix, the transposed loadings matrix plus the residuals matrix. 
This reduction of the data allows presenting the initial data in new coordinates 
or principal components (PCs). The newly generated PCs explain most of the 
information from the dataset. The loadings plot shows the importance of the 
different variables that are responsible for the clustering in the scores plot. The 
scores plot provides information about the relationships between individual 
objects, showing the groups, outliers, etc. [16, 20, 21].

The cluster analysis is used for the grouping of samples, according to 
the type of similarity. Its main task is to recalculate the numerical values of 
similarity between the new group and the rest of the objects. The next step 
consists in the further grouping of the data until all the objects have been 
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merged into one large group. The output of the hierarchical cluster analysis 
(HCA) is a dendrogram which visualises the grouping of samples in a two-
dimensional space [16, 22, 23].

The study by Mali et al. [19] demonstrated that the chemometric approach 
(PCA/CA and factorial analysis of variance (ANOVA)) was advantageous for 
assessing and modelling the contamination patterns of highly polluted areas, 
and thus, it could contribute to the effective monitoring of their quality. In the 
study by Miki et al. [24], CA was used to identify the sources of the parent and 
alkylated PAHs in the sediments. The contaminated sites were categorised on 
the basis of PAHs composition, in order to find their primary sources within 
the site groups.

In spite of the numerous studies that have focused on the analysis of PAHs, 
there are only a few investigations on their distribution and contamination 
identification on the territories of past plants. In this work, analytical and 
chemometric tools were used to identify soil contamination at two former 
primitive asphalt pavement plants, Jänesselja asfaltbetoonitehas in Pärnu 
County, Southeast Estonia and Maadevahe asfaltbetoonitehas on Saaremaa 
Island, West Estonia. First of all, GC-FID chromatograms were recorded for 
an initial screening, in order to determine soil types and estimate the extent of 
weathering. For a detailed fingerprinting, the content and distribution of PAHs 
were determined by GC-MS. The binary ratios of PAHs were calculated. The 
samples from both APPs were compared and, using oil standards (diesel, light 
fuel oil (LFO), used motor oil, shale oil, heavy fuel oil (HFO)) were classified. 
PCA and CA were used to cluster the samples. The binary ratios of PAHs were 
used to distinguish their potential sources in the environmental samples.

2. Material and methods
2.1. Soil samples, reagents and equipment

The chemical fingerprints of 20 spilt oil-containing soil samples from 
Jänesselja APP and 36 samples from Maadevahe APP were analysed. The 
samples were collected from various locations and from different depths. Prior 
to the analyses, the samples were registered and equipped with numbers, and 
stored at 4 °C. Hexane was used as a solvent for extraction of oils and PAHs. 
In this study, for PAHs calculation, the specific internal standards (ISTDs) 
Naphthalene D8, Acenaphthene D10, Phenanthrene D10, Anthracene D10, 
Pyrene D10, Benz(a)anthracene D12, Benzo(a)pyrene D12 and Dibenz(ah)-
anthracene D14 were chosen. The mixtures of the above-mentioned standards 
were prepared and spiked for all the samples, together with the blank sample 
and control samples. For the HOI internal standard, n-tetracontane with a 
final concentration of 20 mg/l in an extraction solution (hexane) was used. 
Analyses for HOI were performed on an Agilent 7890B equipped with a flame 
ionization detector (FID), and an Agilent 7693 autosampler. The column used 
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for the analyses was an Agilent J&W GC Column DB-1 (15 m × 320 μm × 
0.10 μm). The analyses of the target EPA PAH compounds were performed 
on an Agilent 6890N GC system equipped with an Agilent Technologies 5973 
mass selective detector, and an Agilent 7683 Series Autosampler. The column 
used was the Zebron 20 m × 180 µm × 0.18 µm ZB-5MS. In case of both 
instruments, all the samples were injected in a splitless injection mode, with 
helium as the carrier gas. Further, the PAH quantitation was performed in the 
selected ion monitoring (SIM) mode. The validations were established based 
on six calibration points for PAHs and on eight calibration points for HOI, 
with the correlation coefficient (R2) greater than 0.995 for each component.

2.2. Samples preparation

The samples were prepared according to a modified method, ISO 16703:2011 
[25]. Approximately 10 g of each soil sample was weighed into a tube. The 
PAH mix internal standards were spiked into the soil samples from APPs, the 
blank sample and control samples. 10 ml of acetone, 5 ml of the extraction 
solution with the HOI internal standard and 5 g of NaCl were then added to 
the sample tube. The samples were shaken for 16 hours. 1 ml of each extract 
was used for PAHs analysis by GC-MS and approximately 4 ml of the rest 
of the solutions was eluted through a Florisil column for the HOI analysis by 
GC-FID. The polar substances were removed by a clean-up with Florisil and 
the non-polar compounds were eluted through the column with the extraction 
solutions. One blank sample was processed together with the soil samples. The 
limit of quantification (LOQ) of each PAH was 0.003 mg/kg and 20 mg/kg 
for HOI. The identification of the compounds was based on the retention 
times of the calibration standards. The quantification of PAHs was performed 
using the internal standard quantification method, by comparing the area of 
the quantification ion to that of the corresponding deuterated quantification 
standard.

2.3. Principal component analysis

The initial data matrix consisted of 54 samples (rows) and concentrations of 16 
individual PAHs (columns). Two samples were excluded from the chemometric 
analysis because the concentrations of most of the PAHs contained were below 
LOQ. The PAH concentrations were calculated as follows:

					                				    (1)
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basis); C is the PAH concentration obtained from the calibration curve, mg/l; 
C0 is the PAH concentration in the blank sample obtained from the calibration 
curve, mg/l; V is the extraction solution volume, l; and M is the weight of the 
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where a is the number of PAH species in sample A, b is the number of PAH 
species in sample B and c is the number of similar PAH species in sample A 
and sample B [29, 30].

To quantify the distance between the two clusters, single, complete and 
average linkages were used.
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Ant/Phe,	Fla/Pyr,	Ant/(Ant	+	Phe),	Fla/(Fla	+	Pyr),	 Ind/(Ind	+	B(g,h,i)P)	and	B(a)Ant/(B(a)Ant	+	Chr),	
and	the	ratios	of	the	four-to-six-ring	parent	PAHs	to	the	sum	of	the	two-	and	three-ring	parent	PAHs	
(HMW/LMW)	were	calculated.	In	PCA,	a	matrix	consisting	of	54	samples	and	7	PAH	binary	ratios	was	
used.	

	 Prior	 to	 PCA,	 the	 data	 was	 standardised	 using	 two	 methods,	 Min-Max	 scaling	 and	
autoscaling.	In	the	Min-Max	scaling	(normalisation),	the	data	was	scaled	to	a	fixed	range,	usually	to	0	
to	1,	and	this	was	typically	calculated	via	the	following	equation:	
	

𝑋𝑋norm = 3'3456
3478'3456

,	 	 	 	 	 	 	 	 	 	 (2)	

where	Xnorm	stands	for	the	the	normalised	X	value,	Xmin	is	the	minimum	X	value	and	Xmax	is	
maximum	X	value. 

	 In	 order	 to	 avoid	 the	 problem	 of	 incompatibility	 between	 different	 scales,	 the	 data	 was	
often	 centred	 and	 all	 the	 values	 were	 divided	 by	 the	 standard	 deviation	 for	 each	 variable.	 The	
autoscaling	was	performed	via	the	following	equation:	

𝑋𝑋aut = 3'37<=
3>?@

	 ,	 	 	 	 	 	 	 	 	 	 (3)	

where	Xaut	means	the	X	value	(recalculated	value)	after	using	the	autoscaling	method,	Xavg	stands	
for	the	average	X	value	and	Xstd	denotes	the	standardised	X	value.	
	 The	Min-Max	 scaled	 and	 autoscaled	 data	 were	 then	 subjected	 to	 PCA.	 In	 this	 study,	 the	
Microsoft	 Excel	 Macro	 using	 the	 nonlinear	 iterative	 partial	 least	 squares	 (NIPALS)	 algorithm	 was	
applied	to	finding	the	eigenvectors	of	the	most	important	principal	components	[26–28].	

2.4.	Cluster	analysis	
The	hierarchical	clustering	methods	grouped	the	objects	according	to	the	similarity	between	them.	
Based	on	the	Jaccard	similarity	index,	two	sites	that	were	most	similar	to	each	other	were	classified	
into	one	group.	The	Jaccard	similarity	index	was	calculated	by	the	following	equation:	

	 	
𝑆𝑆𝑆𝑆 = C

DEF'C
,		 	 	 	 	 	 	 	 	 (4)	

,

,

,
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2.4.1. Single linkage clustering

As in all agglomerative cluster analyses, the single linkage began with a matrix 
of similarity (or dissimilarity) coefficients. Firstly, the most similar pair(s) of 
the samples, or the first clusters, was(were) found. The second most similar 
pair(s) of the samples, or the highest similarity between a sample and the first 
cluster, whichever was greater, was(were) then found. A disadvantage of the 
single linkage clustering was that it tended to produce long clusters.

2.4.2. Complete linkage clustering

Unlike the single linkage clustering, the complete linkage clustering was often 
inclined to generate opposite extremes by producing highly compact clusters. 
The method calculated the similarity measures after the new groups were 
formed and two groups with the highest similarity were always merged first.

2.4.3. Average linkage clustering

The average linkage clustering, differently from the single and complete 
linkage clusterings, produced no extremes. In order to compute the average 
similarity between a sample and the existing cluster, the type of “average” had 
to be precisely defined by using the unweighted or weighted technique. If group 
A consisted of Na objects and group B of Nb objects, then in the unweighted 
technique, the new similarity (Sab) was calculated by the following equation:

					                				   (5)

where Na is the number of objects in group A and Nb is the number of objects 
in group B.

The weighted mean value was calculated as follows [23, 30]:

					           .				    (6)

For defining the similarity between the samples, R software was used. R is 
a programming language for statistical analysis, graphical representation and 
reporting [31].

3. Results and discussion
3.1. Initial screening

In this study, GC-FID was used for an initial screening of oils. The respective 
chromatograms of soil samples were compared with those of control 
oils and the levels of oils weathering were estimated. Figure 2 shows the 
chromatograms of control oils used in the study for identification of the 
following oil spills: diesel, LFO, shale oil grade C, used motor oil, fresh motor 
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oil and HFO. The retention times between 3.5 and 6 min were attributable to 
HOI from decane (C10) to heneicosane (C21), and the retention times between 
6 and 8.5 min were assignable to fractions C21–C40. From Figure 2a it can be 
seen that the major components in diesel were alkanes C10–C24, while LFO 
(Fig. 2b) contained mostly alkanes C10–C32. Motor oils (Figs. 2d and 2e) were 
found to consist mainly of unresolved complex mixtures (UCMs), while no 
UCMs were identified in diesel (Fig. 2a) or LFO (Fig. 2b). Figure 3 depicts 
the GC-FID chromatograms of soil samples from Jänesselja and Maadevahe 
APPs. All the chromatograms indicate the presence of the mixture of different 
oils. This study found no samples that would have been polluted with one 
type of oil which would have been similar to control oils. The samples from 
Jänesselja APP reveal different patterns of chromatograms, depending on the 
source background (Figs. 3b, 3c, 3d). These chromatograms display pollution 
with different oils, like diesel, LFO, lubricating oil, HFO, waste oil and shale 
oil. Hydrocarbons are represented by a wide range of species, from n-decane 

Fig. 2. GC-FID chromatograms of control oils: (a) diesel, (b) LFO, (c) shale oil grade C, 
(d) used motor oil, (e) fresh motor oil, (f) HFO.
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to high molecular weight paraffins (> C40). The GC-FID chromatograms of 
selected oil samples from Maadevahe APP (Fig. 3a) exhibit a similar pattern 
of chromatograms (hydrocarbons C10–C40), which suggests soil pollution 
sourced from one type of oil or a mixture of oils. Based on this information, 
mainly shale oil was used by Maadevahe APP [32].

The soil samples from Maadevahe APP (Fig. 3a) and sample 16 from Jänes
selja APP (Fig. 3b) were probably polluted with a mixture of diesel, sample 14 
(Fig. 3c) was polluted with a mixture of LFO, waste oil and HFO, and sample 
4 (Fig. 3d), with a mixture of LFO and shale oil. When petroleum products 
are released into the environment, they tend to weather by evaporation, water 
solubilisation and oxidation. Oxygen from the air and biological organisms 
transform the petroleum products, increasing the degradation of n-alkanes. 
After n-alkanes have been removed, the remaining constituents appear as 
a hump on the GC-FID chromatograms, with a few discernible peaks. The 
chromatograms of oil samples from both APPs show much lower n-alkane 
concentrations (small peaks) and higher phytane concentrations in them, in 
addition to UCMs, than in fresh oils. The loss of n-alkanes and increase in 
UCMs are indicative of oil weathering processes [33, 34].

Fig. 3. GC-FID chromatograms of samples from: (a) Maadevahe APP, (b)–(d) Jänes
selja APP.
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3.2. Determination of PAHs in soils

PAHs in soil were identified using a modified method, ISO 18287:2006 [35]. 
For the identification of the compounds, one appropriate analyte retention 
time was chosen and two or three different fragmentation ions (quantifier and 
qualifier) were used (Table 1). The qualifier to quantifier ion area ratio, m/z, 
is unique and should not differ more than ± 20% from the same ratio in 
calibration standards.

The most sensitive ions were used to calculate the contents of individual 
PAHs by using the corresponding calibration curve. The analyte concentrations 
were calculated from the ratio of the samples to the internal standard peak 
area.

Table 1. Ions used for the qualification of PAHs and ISTDs used for the 
quantification of the final concentrations of PAHs

PAH Mass fragment, m/z Internal standard (ISTD) and m/z

Naphthalene 128, 127 Naphthalene D8; 136,137

Acenaphthylene 152, 151 Acenaphthene D10; 162, 164

Acenaphthene 154, 152 Acenaphthene D10; 162, 164

Fluorene 166, 165 Acenaphthene D10; 162, 164

Phenanthrene 178, 176 Phenanthrene D10; 188,184

Anthracene 178, 176 Anthracene D10; 188, 184

Fluoranthene 202, 200 Pyrene D10; 212, 210

Pyrene 202, 200 Pyrene D10; 212, 210

Benz(a)anthracene 228, 226 Benz(a)anthracene; 240, 236

Chrysene 228, 226 Benz(a)anthracene; 240, 236

Benzo(b)fluoranthene 252, 250 Benzo(a)pyrene D12; 264, 260

Benzo(k)fluoranthene 252, 250 Benzo(a)pyrene D12; 264, 260

Benzo(a)pyrene 252, 250 Benzo(a)pyrene D12; 264, 260

Dibenz(ah)anthracene 278, 277, 276 Dibenz(ah)anthracene D14;292, 291

Benzo(g,h,i)perylene 276, 277 Dibenz(ah)anthracene D14;292, 291

Indeno(1,2,3-cd)pyrene 276, 277 Dibenz(ah)anthracene D14;292, 291
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3.3. Detailed fingerprinting

3.3.1. Soil samples contamination identification using PAH binary ratios  
and PCA

Seven PAH diagnostic ratios, namely Ant/Phe, Fla/Pyr, Ant/(Ant + Phe), Fla/
(Fla + Pyr), Ind/(Ind + B(g,h,i)P), B(a)Ant/(B(a)Ant + Chr) and HMW/LMW, 
as well as PCA were used to identify the sources of oil in the soil samples from 
Jänesselja and Maadevahe APPs. The same PAH diagnostic ratios were also 
calculated for control oils, like diesel, LFO, used motor oil, shale oil and HFO, 
and compared with those for the soil samples. Figure 4 shows the average PAH 
binary ratios for the samples from both APPs, with standard deviations. All the 
above ratios of samples from Jänesselja APP had higher standard deviations, 
which indicated that the samples differed from each other to a greater degree 
than did those from Maadevahe APP. The high dispersion of Ant/Phe and 
HMW/LMW ratios just indicates a wider distribution in the grouping of the 
samples in further PCA, but this does not influence the grouping itself.

The average binary ratio of Ind/(Ind + B(g,h,i)P) for all the 54 samples 
was 0.48. One sample had a value > 0.5, which might be due to biomass 
combustion. The other samples had values between 0.42 and 0.5, indicating 
petroleum combustion as the possible source of PAHs. The variation in PAH 
sources revealed by these indices could be due to the different sampling sites, 
with different hydrological and spatial conditions. The Ant/(Ant + Phe) for 

Fig. 4. The average PAH binary ratios for the samples from Jänesselja and Maadevahe 
APPs, with standard deviations.
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the samples from Jänesselja APP was in the range of 0.18–0.84 and for those 
from Maadevahe APP, between 0.15 and 0.33 (Table 2). Generally, Ant/ 
(Ant + Phe) < 0.1 indicates that PAHs in the soil sourced from petroleum 
combustion, whereas Ant/(Ant + Phe) > 0.1 might mean contamination from 
wood and coal combustion [10].

PAHs in the soils with Fla/(Fla + Pyr) < 0.4, B(a)Ant/(B(a)Ant +Chr) < 0.2 
and Ind/(Ind + B(g,h,i)P) < 0.2 were mainly from petroleum contamination. 
PAHs with ratios of 0.4 < Fla/(Fla + Pyr) < 0.5, 0.2 < B(a)Ant/(B(a)Ant + 
Chr) < 0.4 and 0.2 < Ind/(Ind + B(g,h,i)P) < 0.35 originated predominantly 
from the combustion of petroleum. PAHs with Fla/(Fla + Pyr) > 0.5, B(a)Ant/
(B(a)Ant + Chr) > 0.4 and Ind/(Ind + B(g,h,i)P) > 0.35 came chiefly from the 
combustion of coal, shale oil and biomass. Most soil samples from APPs had 
Fla/(Fla+Pyr) < 0.5, B(a)Ant/(B(a)Ant + Chr > 0.4 and Ind/(Ind + B(g,h,i)P) > 
0.35. The above values suggested that contamination at both APPs originated 
from the combustion of oil shale and petroleum [10].

The scores plot in Figure 5 shows the PAH binary ratios of 54 samples from 
APPs, which contained diesel, LFO, used motor oil, shale oil and HFO as the 
first and second principal components (PC1 and PC2 respectively). The first 
two PCs comprised 70.69% of the total components of the complex mixture 
of oil samples. The first principal components were responsible for 45.46% 
of the total oil spill compounds, while the second principal components were 
responsible for 25.23% of the total variance. The scores plot reveals that the 
soil samples mostly contained used motor oil. In this study, the researchers used 
for analysis fresh motor oil in the mixture of different used motor oils, from 
diesel to engine petroleum. Diesel, shale oil, HFO and LFO were not identified 
in the soil samples. The chemical composition of weathered oils differed from 
that of fresh oils. The most noticeable changes in PAHs composition in the 
weathered soils were the depletion of naphthalenes, degradation of alkylated 
PAHs and increase of chrysenes [33, 36]. Being situated distant from the other 
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soil samples and control oils in Figure 2, sample 2 from Jänesselja APP was 
identified as an outlier. The Ant/Phe ratio of the sample was 5, while for all 
the other samples it was < 0.66. The source of anthracene in sample 2 could 
not be identified.

3.3.2. The classification of soil samples from Jänesselja APP

To group the soil samples from Jänesselja APP, another PCA approach was 
applied, leaving sample 2 out as an outlier from further analysis (Fig. 6).

Sample 4 was classified into an individual cluster. Unlike all the other 
samples, this sample had a high Fla/Pyr ratio. With Ind/(Ind + B(g,h,i)P) > 
0.5, sample 13 was distinguished from the other samples whose respective 
ratio was considerably lower. This suggested contamination of the sample 
with PAHs from combustion of biomass. The HMW/LMW of sample 15 was 
less than 0.1, in samples 10 and 1 more than 2 and in samples 14 and 7, 
approximately 1. HMW/LMW ≥ 1.0 was indicative of a pyrogenic source 
and HMW/ LMW < 1.0 suggested a petrogenic source. Most samples from 
Jänesselja and Maadevahe APPs had similar PAH binary ratios and could 
therefore be classified into one group. Contamination in the soil samples 
from both plants originated most likely from shale oil combustion. Samples 4 
and 13 could be clearly differentiated from the other samples by PAH binary 
ratios. Samples 1, 3, 7, 10, 12 and 15 could also be distinguished from the 
other samples by PAH binary ratios, but this difference was not as great as 
in case of samples 3 and 14. Based on PCA, several samples were found to 
be similar in PAH binary ratios. Sample pairs 5 and 6, 9 and 11, and 16 and 
17 were established to be similar in composition, based on origin, sampling 
time and location. However, in the case of sample pairs 3 and 15, 1 and 10, 
and 14 and 7, the similarity could not be traced, based on the information 
available. The oil samples that were closely located in the scores plot (central 
cluster) had a similar chemical composition, based on PAH binary ratios (Ant/
Phe, Fla/Pyr, Ant/(Ant + Phe), Fla/(Fla + Pyr), Ind/(Ind + B(g,h,i)P, B(a)Ant/
(B(a)Ant + Chr), and HMW/LMW). Conversely, the oil samples that were 
located far apart in the scores plot differed in chemical composition, and this 
dissimilarity increased as the distance between the samples increased. Figure 
7 shows the scores plot and the loadings plot of the samples. The grouping of 
the samples was mainly based on the ratio HMW/LMW. In grouping sample 
2, mainly Ant/Phe and Ant/(Ant + Phe) were taken into account, while sample 
4 was grouped chiefly on the basis of Fla/Pyr and Fla/(Fla + Pyr), and sample 
13, on the basis of Ind/(Ind + B(g,h,i)P).



424 Jelena Jurjeva, Mihkel Koel

Fi
g.

 6
. T

he
 g

ro
up

in
g 

of
 sa

m
pl

es
 fr

om
 Jä

ne
ss

el
ja

 A
PP

 o
n 

th
e 

ba
si

s o
f P

A
H

 b
in

ar
y 

ra
tio

s.



425The chemometric approach to identification of residual oil contamination at former primitive asphalt ...

3.3.3. Cluster analysis

Another chemometric technique, cluster analysis, was used for clustering the 
samples. The data consisted of binary ratios of seven PAH isomers (Ant/Phe, 
Fla/Pyr, Ant/(Ant + Phe), Fla/(Fla + Pyr), Ind/(Ind + B(g,h,i)P), B(a)Ant/
(B(a)Ant + Chr), and HMW/LMW) contained in 18 samples from Jänesselja 
APP. Distance was used as a measure of similarity/dissimilarity between the 
samples. Before the distances were computed, the PAH binary ratios were first 
normalised by the maximum-minimum range. Three kinds of linkage methods 
(single, average, complete) were tested in order to find out the most suitable 
linkage method for determination of these ratios. All the linkage methods 
merged the samples almost into the same groups, but the average distance 
between the groups better reflected the relationship between PAH binary 
ratios and oil types.

Figure 8 depicts the output of the average linkage method using the 
Jaccard distance as a similarity measure. From the figure it can be seen that 
the sampling sites fall into two major groups. The dendrogram obtained from 
HCA revealed that sampling sites with similar PAH concentrations were 
clustered into the same group. Based on the clusters obtained from CA using 
chromatogram patterns, as described in Section 3.1, the sampling sites in this 
study were grouped according to oil mixture type. Cluster 1 included sample 
2 (the outlier). Sample 13 in cluster 2 was polluted mostly with LFO and 
sample 4 in cluster 3 with a mixture of shale oil and diesel. Cluster 4 consisted 
of samples which were primarily polluted with HFO (probably mazut), while 
cluster 5 comprised samples containing the mixture of shale oil and LFO. 

Fig. 7. The scores plot and the loadings plot of samples.
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Some sample pairs, namely 1 and 10, 7 and 14, 8 and 16, and 3 and 15, were 
located next to each other on the dendrogram (Fig. 8) and in the scores plot 
(Fig. 7). Oil mixtures 3 and 4 on the dendrogram included the same samples 
as in the scores plot (Fig. 6). PCA and CA classified the samples into the 
same groups. The clusters generated were highly reliable as the samples in 
the groups had similar PAH binary ratios and similar sampling backgrounds.

4. Conclusions

The application of two chemometric techniques, cluster analysis and principal 
component analysis, and two analytical methods, gas chromatography-mass 
spectrometry and gas chromatography-flame ionization detection, were used 
to determine the distribution of polycyclic aromatic hydrocarbons in the 
soils on the territories of past asphalt pavement plants, as well as to identify 
possible sources of old oils. The initial oil screening revealed that the soil 
samples from Jänesselja APP were contaminated with different mixtures of 
oils, such as diesel, light fuel oil, heavy fuel oil, lubricating oil, waste oil 
and shale oil. The GC-FID chromatograms of the selected oil samples from 
Maadevahe APP showed a similar pattern, which suggested that the soil at 
this plant was polluted with one type of oil, namely shale oil. The composition 
and physical properties of spilt oils in the soil samples changed during the 
weathering processes (evaporation, water solubilisation and oxidation), and 
differed from those of fresh oils.

The binary ratios of 16 PAHs revealed that the contamination in the samples 
from Maadevahe and Jänesselja APPs originated from petroleum and shale oil 
combustion. Based on the results of PCA and CA, oils or oil mixtures, with 

Fig. 8. The dendrogram of the groups of samples from Jänesselja APP.
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which the soil samples from Jänesselja APP were mostly polluted, could be 
divided into four groups: oil mixture 1 (mostly LFO), oil mixture 2 (shale oil 
and diesel), oil mixture 3 (HFO, waste oils and diesel), oil mixture 4 (shale oil, 
LFO and diesel). As a result of degradation and migration of PAHs in soil, it 
was difficult to identify the sources of mixed oils and the relative contribution 
of each possible source to pollution according to PAH binary ratios only. It 
can be concluded that using the combination of analytical and chemometric 
methods in oil spill fingerprinting considerably contributed to interpreting the 
data, based on PAH binary ratios, while in determining possible sources of 
old oils, it saved a great amount of time and avoided the high costs of oils 
classification. PCA and CA can be useful tools to examine various relationships 
among different samples. These methods are able to identify similar sample 
groups or sample pairs in the scores plots or on the dendrograms.
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