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Abstract. A side stream of shale oil production contains alkylresorcinols as 
main constituents, which could prove to be useful intermediates to highly 
porous and versatile materials – metal-organic frameworks (MOFs). The 
latter structures have been used as adsorbents for various organic and 
inorganic compounds, including organic sulfur containing molecules. In the 
current work, a pathway from phenolic compounds in shale oil toward metal-
organic framework linkers was indicated and its utility was proved by using 
related metal-organic frameworks as effective adsorbents for sulfur from 
model fuels exemplified in the form of benzothiophene (BT) and isooctane, 
respectively. 
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1. Introduction 

Producing shale oil from Estonian oil shale Kukersite is on many occasions 
accompanied by the production of phenolic compounds, some of which have 
been commercialized, like 2-methyl resorcinol (2-MR) and 5-methyl 
resorcinol (5-MR). These compounds are suitable starting compounds for 
production of porous materials [1] and could provide an easy access to 
ligands useful in synthesis of metal-organic frameworks (MOFs) [2]. A 
possible route from recorcinols to the MOF linkers is depicted in Figure 1. 
The Kolbe-Schmitt reaction of 5-MR leads to carboxylation of resorcinol  
[3–5] and subsequent aerobic oxidation to terephthalic acid derivative [6, 7]. 
Carboxylation could be performed also by biochemical means [8, 9].  
3,5-Dihydroxybenzoic acid has been subjected to the Kolbe-Schmitt reaction 
to get dihydroxyterephthalic acid directly [10, 11]. 
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Fig. 1. Pathway from resorcinols to MOF linkers. 

 
 
These high surface area compounds are extremely versatile materials, 

being useful as gas separation or storage media, adsorbents to various 
organic molecules [12], and chemical sensors or catalysts for many chemical 
processes [13]. Some of said porous materials can be used to remove sulfur 
containing organic compounds from fuels [14–16]. To model the efficiency 
of such structures a series of adsorption experiments were conducted 
demonstrating moderate to excellent capacity in removal of benzothiophene 
(BT) as a representative organic sulfur compound abundant in shale oils. The 
Universitetet i Oslo (UIO-66) family MOFs were chosen pertaining to their 
ease of manufacture [17, 18], excellent thermal [19, 20] and hydrolytic [21] 
stability [22]. 

2. Experimental 

All chemicals were used as purchased from supplier. The UIO-series MOFs 
were synthesized according to the known literature procedure by Katz et al. 
[23] and Rimoldi et al. [24], which leads to 8-connected structures. All 
synthesized MOF samples were thermally activated under ultra-high vacuum 
at suitable temperature for at least 12 h on a Micromeritics Smart VacPrep. 
Nitrogen adsorption and desorption isotherm measurements were performed 
on a Micromeritics Tristar II at 77K. Powder X-ray diffraction (PXRD) 
measurements were collected on a STOE STADI MP equipped with a Kα1 
radiation source and a 1D strip detector or Rigaku ATXG or Rigaku 
Smartlab over a range of 2° < 2θ < 45°. Scanning electron microscopy 
(SEM) studies were performed on a Hitachi S4800-II cFEG or SU8030. Gas 
chromatography (GC) analysis was carried out on an Agilent 7820A fitted 
with a flame ionization detector (FID) and a DB-5 column. 

MOF samples obtained were characterized by nitrogen adsorption iso-
therms (Fig. 2), Brunauer-Emmet-Teller (BET) surface area and PXRD 
measurement (Fig. 3), which in all cases were in good agreement with 
previous results [23, 25]. All produced MOFs except UIO-67 exhibited a 
broad peak in PXRD spectra in 2θ region from 2° to 5° (Fig. 3), being 
associated with missing node defects [26, 27]. 



Allan Niidu 

 

130

 
Fig. 2. N2 adsorption isotherms for UIO-66 series MOFs along with BET surface 
area values. 
 
 

 
Fig. 3. PXRD of UIO-66 series MOFs. 
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3. Studies of benzothiophene adsorption on UIO-66 type MOFs 
3.1. Kinetics 

In a typical experiment 16 to 50 mg of MOF was taken and suspended in a 
241 ppmw BT solution in isooctane (5 mL). The mixture was constantly 
stirred with a magnetic stirrer, only stopped briefly while extracting samples 
(á 200 µL) at 10, 30, 60 and 120 min, and at 24 h. The samples were 
centrifuged and analyzed by gas chromatography-flame ionization detector 
(GC-FID) in isothermal mode. 

As can be seen from Figure 4, in all cases the uptake of BT from the 
isooctane solution was fast and mostly complete after only 10 min of 
exposure. Kinetic parameters were estimated from linearization of the 
pseudo second-order kinetic equation (Eq. (1)) (Table 1) [28–30]: 

 ௧௤೟ = ଵ୏మ௤೐మ + ଵ௤೐  (1)                                           , ݐ
 

where qt is the amount adsorbed at time t, ୫୥୥ ; t is the time of adsorption, h; 

qe is the  amount adsorbed at  equilibrium,  ୫୥୥ ; K2 is the pseudo second-

order kinetic constant, ୥୫୥.୦ ; h is the initial sorption rate, ୫୥୥.୫୧୬ and is 
expressed as follows [28]: 

 ℎ = Kଶݍ௘ଶ.                                                (2) 
 

The linear plot and respective fits are represented in Figure 4 and 
numerical values are presented in Table 2. The highest initial sorption rate 
was observed for UIO-66-NH2 and the highest equilibrium uptake at an 
initial BT concentration of 240 ppmw for UIO-67. R2 values were high for 
all the tested MOFs (Table 2). 

 

Table 1. Kinetic parameters obtained from the pseudo second-order kinetic 
equation 

No. MOF K2, 
 g/(mg.min) 

h,  
mg/(g.min) 

qe, 
mg/g R2 

1 UIO-66 2.9 1.9 0.8 0.999 
2 UIO-66-NH2 48 654 3.7 1.000 
3 UIO-67 0.3 48 13.0 1.000 
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     (a) 

 
 

     (b) 

 
Fig. 4. (a) Kinetics of BT adsorption on selected Zr-MOFs C[S]init = 240 ppmw,  
(b) pseudo second-order linear kinetic plots. 
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3.2. BT adsorption isotherms 

To assess the maximum uptake of benzothiophene on selected UIO-66 series 
MOFs, a sample of solid material (ca 5 mg) was exposed to solutions  
(1.4 mL) with different concentrations of BT (ca 70, 270, 550, 1050 and 
2100 ppmw) in isooctane for 24 h at 20 °C under stirring (200 rpm). Then 
the resultant concentration of BT in the solution was measured by GC-FID 
and uptake calculated by Equation (3) [29, 31, 32]: 

ୣݍ  = (஼౟ି஼౛)×௠౩౥ౢ౤௠౉ోూ ,                                          (3) 
 

where qe is the amount of sulfur adsorbed at equilibrium, ୫୥୥ ; Ci is the initial 

concentration of sulfur in solution, ୫୥୥ ; Ce is the equilibrium concentration of 

sulfur in solution, ୫୥୥ ; msoln is the weight of solution, g; and mMOF is the 
weight of MOF, g. 

All experiments were conducted at least in duplicate and average data is 
presented. 

From these data adsorption isotherms were constructed (Fig. 5) and the 
nonlinear Langmuir isotherm [31, 33] was fitted to obtain evaluations on the 
maximum adsorption capacity of adsorbents according to Equation (4): 

ୣݍ  = ௤ౣ௕஼౛ଵା௕஼౛,                                                  (4) 
 

where qm is the maximum amount adsorbed, ୫୥୥ ; and b is the Langmuir 

binding strength coefficient, ୩୥୫୥. 
The linearized form of the Langmuir isotherm (Eq. (5)) was used for 

comparison purposes: 
 ஼౛௤౛ = ଵ௤ౣ ୣܥ + ଵ௤ౣ௕.                                         (5) 
 

Coefficients of determination (R2) obtained by the nonlinear fit were 
compared to the parameters from the 1st linear Langmuir fit and linear 
Freundlich fit. According to R2 values the nonlinear fit was most accurate 
amongst selected adsorption models (Table 2). 

To choose the best model, also the Freundlich isotherm was linearized, 
according to Equation (6) (Fig. 6) : 

 lnୣݍ = lnܭ୤ + ଵ௡ ln(6)                                       ,ୣܥ 
 

where Kf is the empirical Freundlich coefficient describing sorption capacity, ௠௚భషభ೙௞௚భ೙௚  and n is the empirical dimensionless constant related to the 
adsorption intensity [29]. 
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    (a) 

 
 
     (b) 

 
Fig. 5. BT adsorption isotherms and the corresponding nonlinear (a) and 1st linear 
(b) Langmuir fit. 
 



Phenols to Pores to Adsorption 

 

135 

 
Fig. 6. Freundlich linearization of BT isotherms. 

 

Table 2. Parameters obtained from the nonlinear Langmuir fit, 1st linear 
Langmuir fit and linear Freundlich fit 

 Nonlinear Langmuir 1st linear Langmuir Linear Freundlich 
No. MOF qm,  

mg/g 
b,  

g/mg 
R2 qm, 

mg/g 
b,  

g/mg 
R2 Kf 1/n R2 

1  UIO-66 114 0.26 0.996 100 0.32 0.674 26 0.82 0.991 
2  UIO-66-NH2 110 0.38 0.999 88 0.54 0.828 29 0.77 0.995 
3  UIO-67 82 0.48 0.997 80 0.49 0.929 22 0.83 0.993 
 

3.3. Stability of adsorbent 

Stability was assessed by subjecting the adsorbent samples to PXRD post 
adsorption tests (Fig. 7) and in selected cases also SEM analysis. 

In general, according to PXRD data the tested adsorbents remained 
crystalline, which was further supported by SEM micrographs. The excep-
tion was UIO-66-NH2, which exhibited some loss of intensity in PXRD 
analysis and a slight morphology change is observable in SEM micrographs. 

The efficiency of UIO-66 series MOFs tested in the current work is 
comparable to that of Cu-BTC [14], but is lower than that of NENU-511 
[34]. The latter has proven to be one of the most effective porous structures 
for removal of aromatic sulfur containing compounds from model fuels.  
Cu-BTC and NENU-511 have qm values of 68 mg/g and 170 mg/g, 
respectively. 
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                               UIO-66  

  
 

                        UIO-66-NH2  

 
 

                                                           UIO-67 

 
Fig. 7. Comparison of MOF samples “as synthesized” and activated to samples used 
for BT adsorption tests. 
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Figure 8 shows SEM micrographs of selected MOFs “as synthesized” and 
after adsorption tests. 

 
 

(a) 
 

(b) 
 

 
 

(c) 
 

 

(d) 
 

 
 

(e) 
 

 

(f) 
 

 
Fig. 8. SEM micrographs of selected MOFs “as synthesized” and after adsorption 
tests: (a) synthesized and activated UIO-66; (b) synthesized and activated  
UIO-66-NH2; (c) synthesized and activated UIO-67; (d) UIO-66 after adsorption 
test; (e) UIO-66-NH2 after adsorption test; (f) UIO-67 after adsorption test. 
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4. Conclusions 

Three UIO-66 type metal-organic frameworks were synthesized and 
subjected to the adsorption of benzothiophene from the isooctane solution. 
According to the experimental results and subsequent data analysis, the 
examined structures measured well against Cu-BTC, although better MOF-
based adsorbents were available. Also, for future experiments, flow through 
set-up instead of batch tests should be considered, as one of the compounds 
exhibited some signs of mechanical wear under mixing batch conditions. 
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