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Abstract. Recently, in a paper by Tarski and Givant (Bull. Symbolic Logic, 1999, 5, 175–214),
Tarski’s system of geometry was revived. The system originated in Tarski’s lectures of 1926–
27, but was published in the 1950s–60s and in 1983. On the other hand, the author’s papers of
2005–07 revived the betweenness geometry, initiated by the Estonian scientists Sarv, Nuut, and
Humal in the 1930s, and by the author in 1964. It is established here that Tarski’s system of
geometry is essentially the same as Euclidean continuous betweenness geometry with a group
of movements.
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1. INTRODUCTION

The recent paper [1] by Alfred Tarski (1902–83) and Steven Givant can be
considered as revival of Tarski’s system of geometry. Let us cite ([1], pp. 175, 176):
“In his 1926–27 lectures at the University of Warsaw, Alfred Tarski gave an
axiomatic development of elementary Euclidean geometry ... . [...] Substantial
simplifications in Tarski’s axiom system and the development of geometry based
on them were obtained by Tarski and his students during the period 1955–65. All
of these various results were described in Tarski [2−4] and Gupta [5].” “[Section 2]
outlines the evolution of Tarski’s set of axioms from the original 1926–27 version
to the final versions used by Szmielew and Tarski in their unpublished manuscript
and by Schwabhäuser–Szmielew–Tarski [6].”

In Tarski’s system of axioms the only primitive geometrical objects are
points: a, b, c, ... . There are two primitive geometrical (that is non-
logical) notions: the ternary relation B of “soft betweenness” and quaternary
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relation ≡ of “equidistance” or “congruence of segments”. The axioms are: the
reflexivity, transitivity, and identity axioms for equidistance; the axiom of segment
construction ∃x(B(qax) ∧ ax ≡ bc) a.o.; reflexivity, symmetry, inner and outer
transitivity axioms for betweenness; the axiom of continuity, and some others.

In 1904, Veblen [7] initiated “betweenness geometry” with the same primitive
objects – points, and the only primitive notion – strict betweenness; the name
betweenness geometry was given afterwards by Hashimoto [8].

This standpoint was developed further in Estonia, first by Nuut [9] in 1929 (for
dimension one, as a geometrical foundation of real numbers). In 1931 Sarv [10]
proposed a self-dependent axiomatics for the betweenness relation in the arbitrary
dimension n, extending Veblen’s approach so that all axioms of connection,
including also those concerning lines, planes, etc., became consequences. This
self-dependent axiomatics was simplified and then perfected by Nuut [11] and
Tudeberg (from 1936 Humal) [12]. As a result, an extremely simple axiomatics was
worked out for n-dimensional geometry using only two basic concepts: “point” and
“between”.

The author of the present paper developed in [13] a comprehensive theory
of betweenness geometry, based on this axiomatics (see also [14]). In [13] the
notions “collineation” and “flag” are defined in betweenness geometry, and also
the notion “group of collineations” is introduced by appropriate axioms. Using a
complementary axiom, this group is turned into the “group of motions”. These
axioms say that for two flags there exists one and only collineation in this group,
which transports one flag into the other.

The purpose of the present paper is to show that the axiomatics in [13] gives
the foundation of absolute geometry, the common part of Euclidean and non-
Euclidean hyperbolic (i.e. Lobachevski–Bolyai) geometry, and that by adding a
form of Euclid’s axiom, one obtains Tarski’s system of geometry.

2. TARSKI’S SYSTEM OF GEOMETRY

Recall that the original form of this system was constructed in 1926–27. It
appeared in [4], which was submitted for publication in 1940, but appeared only
in 1967 in a restricted number of copies. This paper (which is really a short
monograph) is reproduced on pp. 289–346 of Collected Papers [15], volume 4.

All the axioms are formulated in terms of two primitive notions, the ternary
relation of soft betweenness, B, and the quaternary relation of equidistance, ≡,
among points of a geometrical space. The original set consists of 20 axioms for
2-dimensional Euclidean geometry. The possibility of modifying the dimension
axioms in order to obtain an axiom set for n-dimensional geometry is briefly
mentioned.

The next version of the axiom set appeared in [2]. A rather substantial
simplification of the axiom set was obtained in 1956–57 as a result of joint efforts
by Eva Kallin, Scott Taylor, and Tarski, and discussed by Tarski in his lecture
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course on the foundations of geometry given at the University of California,
Berkeley. It appeared in print in [3].

The last simplification obtained so far is due to Gupta [5]. It is shown in this
work that some axioms can be derived from the remaining axioms. As a result, the
axiom set consists of the following 11 axioms (see [1], also [6], 1.2):

Reflexivity, Transitivity, and Identity Axioms for Equidistance:
Ax.1. ab ≡ ba, Ax.2. (ab ≡ pq) ∧ (ab ≡ rs) → pq ≡ rs,

Ax.3 ab ≡ cc → a = b.

Axiom of Segment Construction:
Ax.4 ∃x(B(qax) ∧ (ax ≡ bc)).

Five-Segment Axiom:
Ax.5 [(a 6= b) ∧B(abc) ∧B(a′b′c′) ∧ (ab ≡ a′b′) ∧ (bc ≡ b′c′)

∧(ad ≡ a′d′) ∧ (bd ≡ b′d′)] → (cd ≡ c′d′).

Inner Transitivity Axiom for Betweenness:
Ax.6 B(abd) ∧B(bcd) → B(abc).

Inner Form of Pasch Axiom:
Ax.7 B(apc) ∧B(bqc) → ∃x[B(qxa) ∧B(pxb)].

Lower n-Dimensional Axiom for n = 3, 4, ... :
Ax.8 (n) ∃a∃b∃c∃p1∃p2...∃pn−1[∧

1≤i<j<n pi 6= pj∧
∧n−1

i=2 (ap1 ≡ api)∧
∧n−1

i=2 (bp1 ≡ bpi)∧
∧n−1

i=2 (cp1 ≡ cpi)

∧[¬B(abc) ∧ ¬B(bca) ∧ ¬B(cab)]
]
.

Upper n-Dimensional Axiom for n = 2, 3, ... :
Ax.9(n)[∧
1≤i<j<n pi 6= pj ∧

∧n−1
i=2 (ap1 ≡ api) ∧

∧n−1
i=2 (bp1 ≡ bpi) ∧

∧n−1
i=2 (cp1 ≡ cpi)

]

→ [B(abc) ∨B(bca) ∨B(cab)].

Axiom of Continuity:
Ax.10 ∃a∀x∀y[(x ∈ X) ∧ (y ∈ Y ) → B(axy)]

→ ∃b∀x∀y[(x ∈ X) ∧ (y ∈ Y ) → B(xby)].

A Form of Euclid’s Axiom:
Ax.11 B(adt) ∧B(bdc) ∧ (a 6= d) → ∃x∃y[B(abx) ∧B(acy) ∧B(ytx)].

This axiom set is denoted by EG(n) in [1]. In [6] the lower and upper dimension
axioms differ from those in EG(n); this axiom set is denoted by EH(n).

In [1] it is noted that Tarski’s system of foundations of geometry has a
number of distinctive features, in which it differs from most, if not all, systems
of foundation of Euclidean geometry that are known from the literature. Of the
earlier systems, probably the two closest in spirit to the present one are those of
Pieri [16] and Veblen [7].
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3. CONTINUOUS BETWEENNESS GEOMETRY WITH MOVEMENTS

Veblen’s approach, based only on the axioms for betweenness, was developed
further in 1930–64 by the Estonian scholars Nuut, Sarv, Humal, and Lumiste
(see [9−13]). The most complete studies, [10] and [13], were published in Estonian,
and are therefore not widely available. Betweenness geometry has been revived in
the author’s papers [17,18].

The set of axioms for betweenness geometry is as follows [17]:

B1: (a 6= b) ⇒ ∃c, (abc); B2: (abc) = (cba);

B3: (abc) ⇒ ¬(acb); B4: 〈abc〉 ∧ [abd] ⇒ [cda]; B5: (a 6= b) ⇒ ∃c,¬[abc];

B6: ¬[abc] ∧ (abd) ∧ (bec) ⇒ ∃f, ((afc) ∧ (def)),

where (abc) = B(abc) ∧ (a 6= b 6= c 6= a) means that b is strictly between a
and c, 〈abc〉 = (abc) ∨ (bca) ∨ (cab) means that the triplet (a, b, c) is correct, and
[abc] = 〈abc〉 ∨ (a = b) ∨ (b = c) ∨ (c = a) means that (a, b, c) is collinear.

Betweenness geometry as a system of consequences from these axioms is
developed in [10,13,14,17,18]. In [18] coordinates were introduced, algebraic
extension to ordered projective geometry was given, and collineations were
investigated.

In particular, the subset {x|(axb)} is called an interval ab with ends a and b. If
in an interval one has (axy), then it is said that x precedes y. This turns the interval
into an ordered point-set.

If a, b, c are non-collinear, then they are said to be vertices, the intervals
bc, ca, ab sides (opposite to a, b, c, respectively) of the triangle 4abc, which is
considered as the union of all of them.

In [13] it is proved (Theorem 13) that

For a triangle 4abc, the subset {x|∃y, (byc) ∧ (axy)} does not depend on the
reordering of vertices a, b, c.

It is natural to call this subset the interior of the triangle 4abc. Here any
permutation of a, b, c is admissible.

A betweenness geometry is said to be continuous (see [13]) if the following
axiom is satisfied.

Axiom of Continuity:

If the points of an interval ab are divided into two classes so that every point
x of the first class precedes every point y of the second class, then there exists a
point z which is either the last point of the first class, or the first point of the second
class,

or, by means of only the betweenness relation (taking along also some concepts of
the set theory):
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B7: {(ab = X ∪ Y ) ∧ [(x ∈ X) ∧ (y ∈ Y ) → (axy)]}
→ ∃{[(z ∈ X) ∧ (axz)] ∨ [(z ∈ Y ) ∧ (azy)]}.

Among collineations movements can be introduced in betweenness geometry,
following [10] and [13].

First the configuration of a flag must be defined. Let us start with the line
Lab = {x|[xab]}, with a 6= b, the interval ab = {x|(axb)}, and the half-line
(ab = {x|(axb) ∨ (x = b) ∨ (abx)} of the line Lab, containing b, with initial point
a. In [13] and [17] it is proved that if two different points c, d belong to a line Lab,
then Lcd = Lab, i.e. the line is uniquely defined by any two of its different points.

Next the plane will be defined by Pabc = Qa ∪ Qb ∪ Qc with non-collinear
a, b, c, where Qa = Lab ∪Lac

⋃
x∈bc Lax. It is obvious that the plane Pabc does not

depend on the reordering of the points a, b, c. In [13] it is proved (Theorem 18) that
if three non-collinear points d, e, f belong to the plane Pabc, then Pdef = Pabc, i.e.
the plane is uniquely defined by any three of its non-collinear points. Moreover,
it is established (Theorem 19) that if two different points of a line Lab belong to a
plane Pabc, then all points of this line belong to this plane.

It is said that two points x, y of the plane are on the same side of this line if
there is no point of this line between x and y, but they are on different sides of this
line if there exists z of this line so that (xzy). In [13] it is proved (Theorem 22)
that a line Lab belonging to the plane decomposes all remaining points of this plane
into two classes so that every two points of the same class are on the same side of
this line, but every two points of different classes are on different sides of this line.
These classes are said to be half-planes, and this line is considered as their common
boundary. Here {x|∃y[(y ∈ Lab) ∧ (cyx)] is the half-plane not containing c. The
other half-plane of Pabc, with the same boundary Lab (i.e. containing c), will be
denoted by (ab|c.

A betweenness geometry is said to be two-dimensional (or plane geometry)
if there exist three non-collinear points a, b, c and all other points x belong to
Pabc. For this geometry the flag F = F (abc) is defined as the triple F (abc) =
(a, (ab, (ab|c ).

Any one-to-one map f of a betweenness plane onto itself is said to be a
collineation if (abc) ⇒ (f(a)f(b)f(c)), i.e. if the betweenness relation remains
valid by f . Then also [abc] ⇒ [f(a)f(b)f(c)], i.e. every collinear point-triplet
maps into a collinear point-triplet. Hence every line maps into a line; from this
stems the term “collineation”. It is also clear that every flag maps into a flag, and
that all collineations of a betweenness plane form a group.

Now a new axiom for betweenness plane geometry can be formulated.

Axiom of Movements:

B8: For any two flags F and F ′ there exists one and only one collineation f so
that F ′ = f(F ).

In this situation f is called the movement which transports F into F ′. It is clear
that all movements form a subgroup of the group of all collineations.
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The same axiom and its conclusion can be formulated also for higher
dimensions. For instance, for dimension three this is as follows.

Four points a, b, c, d of a plane are called coplanar, otherwise not coplanar (or
tetrahedral). The betweenness geometry is said to be three-dimensional if there
exist four tetrahedral points a, b, c, d, but all other four points are either tetrahedral,
or coplanar. It is said also that then one has the geometry of a 3-space Sabcd.

In [13] it is proved 1) that the 3-space is uniquely defined by any of its
tetrahedral points (Theorem 29), 2) that if two planes in a 3-space have a common
point, then they have a common line (which contains all their common points, if
these planes are different) (Theorem 30), and 3) that a plane Pabc in a 3-space
decomposes all remaining points of this 3-space into two classes, so that every
two points of the same class are such that there exist no points of the plane between
them, but for the points of different classes such a point exists (Theorem 31). These
two classes are called the half-3-spaces with the common boundary Pabc. If this
half-3-space contains d, then it will be denoted by (abc|d.

The flag F = F (abcd) in a 3-space is defined as the quadruple

F (abcd) = F (a, (ab, (ab|c, (abc|d ).

Now the Axiom of Movement B8 can be formulated also for the 3-space, and
gives the same conclusion.

In the same manner this axiom and its conclusion can be extended also for
higher than 3 dimensions.

4. COMPARISON OF THESE TWO SYSTEMS OF GEOMETRY

Let us first try to show that almost all axioms of Tarski’s system are valid in
continuous betweenness geometry with movements. Here we need a conclusion

(∗) B(abd) ∧ (d = a) → (a = b)

in this system, which is established in [5] (see [1], p. 190). (Note that in [6] this
(*) is taken as axiom Ax.6, and axiom Ax.6 above is then proved as a consequence
3.5(1).)

The axioms Ax.6 and Ax.7, formulated by only the soft betweenness relation
B(abc) = (abc) ∨ (a = b) ∨ (b = c) ∨ (c = a), can be verified in the following
way.

First let us consider Ax.6, which is now

[(abd) ∨ (a = b) ∨ (b = d) ∨ (d = a)] ∧ [(bcd) ∨ (b = c) ∨ (c = d) ∨ (d = b)]

→ [(abc) ∨ (a = b) ∨ (b = c) ∨ (c = a)].
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Here (abd)∧(bcd) → (abc) follows from [17], Lemma 8, (9), if we interchange
a and d, and use B2, so that this (9) gives (bcd) ∧ (abd) → (abc).

For the other possibilities Ax.6 is also valid; for instance, (abd) ∧ (c = d) →
(abc), but the other possibilities are either obvious (because, in particular, (d = a)
implies (a = b), due to (*)), or lead to contradictions.

Let us consider Ax.7:

[(apc) ∨ (a = p) ∨ (p = c) ∨ (c = a)] ∧ [(qcb) ∨ (q = c) ∨ (c = b) ∨ (b = q)]

→ ∃x[(axq)∨(a = x)∨(x = q)∨(q = a)]∧[(bpx)∨(b = p)∨(p = x)∨(x = b)].

Here (apc) ∧ (qcb) → ∃x(axq) ∧ (bpx) follows directly from B6. Further,
(apc) ∧ (q = c) implies (apq), and hence for x = p implies that (axq) ∧ (p = x).
Next, (apc) ∧ (c = b) gives for x = a that (a = x) ∧ (xpb), where due to B2,
(xpb) = (bpx), but (apc) ∧ (b = q) implies for x = b that (x = q) ∧ (x = b).

If in the first premise one takes (a = p), then the conclusion is true by
x = a = p. The premise (p = c)∧(qcb) gives for x = q that (x = q)∧(bpq), where
due to B2 and p = c here (bpq) = (qpb) = (qcb). For the premise (c = a)∧ (qcb),
(*) must be used, due to which the first premise of Ax.7 implies a = p; now the
consequence is satisfied by x = a = p.

For (p = c)∧ (q = c), x = c = p = q fits; for (p = c)∧ (c = b) there is b = p,
and here x = q fits; for (p = c) ∧ (b = q), x = q fits.

Finally, for (c = a) ∧ (q = c), (*) gives again that a = p and now
x = a = c = p = q fits; for (c = a) ∧ (c = b), x = a = b = c fits; for
(c = a) ∧ (b = q), again a = p must be used, due to (*), and therefore here
x = a = p fits. This finishes the verification of Ax.7 in betweenness geometry.

Further let us consider the axioms for equidistance. First the meaning of
equidistance must be defined.

In the betweenness geometry with movements two point-pairs a, b and p, q are
said to be equidistant, and are then denoted ab ≡ pq, if there exists a movement
which transports ab into pq.

Then the inverse movement transports pq into ab, so that also pq ≡ ab. If
ab ≡ rs due to another movement, then these movements together transport pq
into rs, hence pq ≡ rs. This shows that Ax.2 is here valid. Also Ax.3 is valid
because every movement is one-to-one map.

The verification of Ax.1 is more complicated: ab ≡ ba. This can be made,
following [13], by including the Axiom of Continuity B7.

Let us consider the movement f , defined by f(F (abc)) = F ′(bac). Then
f(a) = b and in order to verify Ax.1, we need to show that f(b) = a.

Denoting f(b) = a1, one has three possibilities: (aa1b), (a1ab), a1 = a. For
the first two of them it is needed to show that each leads to a contradiction.

Let us start with the first possibility: (aa1b), and denote f(a1) = b1. Here
(aa1b) gives after f that (bb1a1) = (a1b1b), due to B2. Our aim is to show that
here is a contradiction.
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Using once more the movement f , we see that the flag F (abc) moves by
g = f ◦ f into F1(a1bc). This shows that b1 belongs to the half-line (a1b, thus
(b1 = b) ∨ (a1b1b) ∨ (a1bb1). Here the last component contradicts, due to B3,
(a1b1b) above.

The first component is also impossible, because then the movement g would
preserve the flag F ∗(bac) and must be, due to B8, the unit movement, but this
would be a contradiction.

To accomplish the verification of Ax.1, one has to show that the middle
component (a1b1b) also leads to a contradiction. Here the Axiom of Continuity
B7 is needed.

Denoting g(a1) = a2 and g(b1) = b2, one may conclude from (aa1b)∧ (a1b1b)
that (a1a2b1) ∧ (a2b2b1), because g is a collineation. Now the conclusions (8) and
(9) of [13] can be used; they give that (aa1a2) holds. Further, denoting g(a2) = a3

and g(b2) = b3, one may conclude that (a2a3b2)∧(a3b3b2), which implies (aa2a3)
as above. This process can be continued. As a result, one has that in ab there is an
infinite sequence {a1, a2, a3, ..., ak, ...} so that (aak−1ak) for all k = 2, 3, ... .

Now one can divide the interval ab into ab = X ∪ Y so that X consists of the
points x, each of which precedes some point ak of the above sequence, and Y of the
points y, each of which follows all points of this sequence. Here obviously (axy).
Due to B7, ∃{[(z ∈ X) ∧ (axz)] ∨ [(z ∈ Y ) ∧ (azy)]}. But (axz) is impossible
because (z ∈ X) means that there exists ak so that (azak), where (aakak+1) and
thus ak ∈ X; taking now ak = x, one has (azx) which contradicts (axz), due to
B3.

Hence (azy) and thus z ∈ Y . Denoting now g(z) = z′, one has the possibilities
(az′z) ∨ (azz′) ∨ (z′ = z). It remains to show that each of them leads to a
contradiction.

For (az′z) it is impossible that z′ ∈ Y , because then there would be (azz′)
which contradicts (az′z), due to B7. Hence z′ ∈ X and there exists an so
that (az′an), thus for some k one has (ak−1z

′ak). Considering now the inverse
movement g−1, one has g−1(an) = an−1, g−1(z′) = z, and so (ak−1z

′ak) leads to
(ak−2zak−1), which contradicts z ∈ Y .

For the second possibility (azz′), let us denote g−1(z) = z∗ and show that here
(z∗zb). Indeed, one has first, due to [13], Lemma 8, that (aa1z)∧(azz′) → (a1zz′),
then (azb) ∧ (g(a) = a1) ∧ (g(z) = z′) ∧ (g(b) = b1) → (a1z

′b1), and due
to the same Lemma 8 (a1zz′) ∧ (a1z

′b1) → (zz′b1), thus (zz′b1) ∧ (g−1(z) =
z∗) ∧ (g−1(z′) = z) ∧ (g−1(b1) = b) → (z∗zb).

This means that z∗ belongs to the half-line (za, hence (az∗z)∨ (z∗az)∨ (z∗ =
a). Here (az∗z) says that z∗ ∈ X and this, as above, leads to a contradiction. Also
(z∗az) ∨ (z∗ = a) leads to a contradiction, because after using g one would have
(za1z

′) ∨ (z = a1), which is impossible.
It remains to consider the third possibility z′ = z. Then g would preserve the

point z, the half-line (za, and the half-plane (za|c, thus the flag F ∗(zac). Hence g
would be the unit movement, but this contradicts (g(a) = a1) ∧ (aa1b).
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The result is that all possibilities above, except a1 = a, lead to contradictions.
Hence f(b) = a, but this verifies that f transports ab into ba, and that Ax.1 is valid.

The movement which transports ab into ba is said to be the reversion of the
interval ab.

Similarly, one may introduce the reversion of an angle ∠abc. Let us
consider the movement f which transports the flag F (b, (ba, (ba|c) into the flag
F ′(b, (bc, (bc|a). Here ba ≡ bc, and f will be the reversion of the interval ac. For
the angle ∠abc this f is called its reversion.

Next let us consider the axioms Ax.4 and Ax.5., which are dealing with
segments. For Ax.4 one can take a point p so that (qap), and then a point d
which does not belong to the lines Lqa and Lbc. Considering now the flags
F (a, (ap, (ap|d) and F ′(b, (bc, (bc|d), and using the movement f defined by
f(F ′) = F , one can take x = f(c), which makes Ax.4 valid.

For Ax.5 one can use the movement f∗ which transports the flag
F (a, (ab, (ab|d) into the flag F ′(a′, (a′b′, (a′b′|d∗), where d and d∗ belong to
different half-planes with the boundary La′b′ . Then, due to ab ≡ a′b′, there is
f∗(b) = b′, and, due to bc ≡ b′c′, there is f∗(c) = c′. Moreover, f∗ transports d
into a point d′′ so that a′d′′ ≡ ad ≡ a′d′ and b′d′′ ≡ bd ≡ b′d′.

Let us consider the reversion g of the angle ∠d′a′d′′. It transports d′ into a
point of the half-line (a′d′′, which due to da ≡ d′a′, da ≡ d′′a′ coincides with d′′.
(Here Theorem 45 of [13] must be used, which states that in a half-line (a′p there
exists one and only one point b′ such that a′b′ ≡ ab, where ab is a given interval.)
Since g is involutory, it transports d′′ back to d′, so that g is also the reversion of
d′d′′. The same argument shows that the reversion of the angle ∠d′b′d′′ is also the
reversion of d′d′′, thus is g. Hence g interchanges d′ and d′′, preserving a′, b′, and
c′. It follows that f∗ ◦ g−1 transports a, b, c, d into a′, b′, c′, d′, respectively, hence
cd ≡ c′d′, as is needed in Ax.5.

The axioms Ax.10 and Ax.11 are formulated by means of only the soft
betweenness relation B(abc). In Ax.10 also the concepts of the set theory are
used and it is obvious that Ax.10 follows from B7.

To obtain Ax.11, one must add one more axiom to the axioms B1–B8 of the
continuous betweenness geometry with movements.

A Form of Euclid’s Axiom:

B9: (adt) ∧ (bdc) ∧ (a 6= d) → ∃x∃y[(abx) ∧ (acy) ∧ (ytx)].

So one obtains the Euclidean continuous betweenness geometry with movements.

Finally it remains to consider the n-dimensional axioms Ax.8(n) and Ax.9(n).
In betweenness geometry the dimension is introduced by a definition. The

simplest way for this is as follows.
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In [17] it is established that a betweenness geometry is the same as an ordered
join geometry, as developed in [19]. There for a subset S of points its linear hull
is defined as follows. A subset S is called convex if S ⊃ z, y implies S ⊃ zy. A
convex set S for which S ⊃ z, y implies S ⊃ (zy is called a linear set. The least
linear set which contains a given set S is called the linear hull of S and denoted
by < S >.

If S = {a1, ..., an+1} is a set of n + 1 different points, then these are said to be
linearly independent if no fewer than n + 1 of them generate this S (in the sense
that S is their linear hull). Then they form a basis of < S > and n is called the
dimension of < S >, which is then called an n-dimensional space.

Note that Sarv in [10] introduces the (n+1)-simplex recursively: The interval ab
is a 2-simplex, the triangle 4abc is a 3-simplex, a tetrahedron, defined by 4 points
which are not coplanar, is a 4-simplex, ... , an (n + 1)-simplex is defined by n + 1
points which are not in an (n−1)-dimensional space. Here the n-dimensional space
is the set of points of all lines which connect the points of a face of an (n + 1)-
simplex, as an m-simplex, with the points of the opposite face, as an (n−m− 1)-
simplex; 0 ≤ m ≥ n− 1.

In Tarski’s original system of 1926–27 the axioms of dimension were given
only for dimension 2 and they coincide with Sarv’s corresponding definitions
(see [6], pp. 22–23).

For higher dimension n, Ax.8(n) and Ax.9(n) are reformulated by means of
only the betweenness relation in [6], p. 119, and then they coincide also with Sarv’s
definition.

The result of the above discussion can be formulated as a statement:

In the Euclidean continuous betweenness geometry with the group of move-
ments all axioms of Tarski’s system are valid.

Since in [10] and [6] the development in both geometries led to the Cartesian
space over the Pythagorian ordered field, a more precise statement can be
formulated:

The Euclidean continuous betweenness geometry with the group of movements
coincides with Tarski’s system of geometry.

Note that if in Tarski’s system Ax.11 (A Form of Euclid’s Axiom) is replaced
by the Axiom of Hyperbolic Parallels, then this system will give rise to hyperbolic
geometry. A variant of its realization is presented by W. Schwabhäuser in Part II
of [6]. The same can be made, of course, also in the continuous betweenness
geometry with the group of movements.

A complete presentation of hyperbolic geometry by means of analytic methods
is given in Nuut [20]. Nuut’s investigations into hyperbolic universe geometry are
analysed in [21,22].
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Tarski geomeetria süsteem ja liikumisrühmaga
vahelsusgeomeetria

Ülo Lumiste

Ühes hiljutises, 1999. aasta artiklis on uuesti elustatud Tarski geomeetria
süsteem, mis on alguse saanud Tarski loengutest aastail 1926–1927, avaldatud
aastail 1950–1960 ja seejärel 1983. aastal. Teisalt on autori artiklites aastail 2005–
2007 uuesti elustatud vahelsusgeomeetria, mis on alguse saanud eesti teadlaste
J. Sarve, J. Nuudi ja A. Humala 1930. aastate töödest ning leidnud käsitlemist
autori publikatsioonides 1964. aastal. Käesolevas artiklis on tõestatud, et Tarski
geomeetria süsteem on tegelikult sama mis eukleidiline liikumisrühmaga pidev
vahelsusgeomeetria.
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