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Abstract. In a previous paper the author recapitulated betweenness geometry, developed in
1904–64 by O. Veblen, J. Sarv, J. Hashimoto, and the author. The relationship of this geometry
with join geometry (by W. Prenowitz) was investigated. Now this relationship will be extended
to convex and linear geometry. The achievements of the well-developed projective plane
geometry are used to enrich betweenness plane geometry with coordinates, ternary operation,
algebraic extension, Lenz–Barlotti classification, translation, and Moufang type. The final
statement is that every Moufang-type betweenness plane is Desarguesian.

Key words: betweenness plane, ordered projective plane, ternary operation, Lenz–Barlotti
classification, Moufang-type plane.

1. INTRODUCTION

In the foundation of geometry the betweenness relation has fascinated the
investigators for a long time. Already C. F. Gauss, in his letter to F. Bolyai (6 March
1832; see [1], p. 222), pointed to the absence of betweenness postulates in Euclid’s
treatment. Elimination of this defect was started 50 years later by Pasch [2]. Further
development in the 19th century (through the works of G. Peano, F. Amodeo,
G. Veronese, G. Fano, F. Enriques, and M. Pieri) led to Hilbert’s fundamental
Grundlagen der Geometrie [3], where the betweenness relation is subject to the
axioms of connection and of order (I 1–7, II 1–5 of Hilbert’s list), called by
Schur [4] the projective axioms of geometry. Here the axioms of order II 1–5 are
presented as dependent on the axioms I 1–7.

In the first decade of the 20th century Hilbert’s projective axioms were
investigated by Moore [5] and Veblen [6]. Moore indicated some redundancy in
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Hilbert’s axioms of order, which Hilbert took into consideration in the following
editions (e.g. in the seventh edition of [3]). But in these editions there was
not considered the question asked by Henri Poincaré in 1902: “Ne setait-il pas
préférable de donner aux axiomes du deuxième groupe une forme qui les affranchit
de cette dépendance et les séparât complètement du premier groupe?” (see [7],
Appendice. Ch. 1: Les foundaments de la géométrie, page 112; first published in
Journal des savants, Mai 1902).1

Veblen [6] was the first to respond to this question in 1904. He gave independent
axioms of betweenness relation and showed that the lines and planes can then be
defined as special sets of points.

Huntington [8−11] gave an elaborated system of axioms for the betweenness
relation, but only in dimension one, i.e. for the case of a line.

This standpoint was developed further in Estonia, first by Nuut [12] in
1929 (for dimension one, as a geometrical foundation of real numbers). Then
Sarv [13] proposed in 1931 an axiomatics for the betweenness relation for
an arbitrary dimension n, extending the Moore–Veblen approach so that all
axioms of connection, including also those concerning lines, planes, etc., became
consequences. This self-dependent axiomatics was simplified and then perfected
by Nuut [14] and Tudeberg (from 1936 Humal) [15]. As a result, an extremely
simple axiomatics was worked out for n-dimensional geometry using only two
basic concepts: “point” and “between”.

The author of the present paper developed a comprehensive theory of the
models of betweenness, based on this axiomatics [16]. At the same time he
established [17] that in dimension > 2 this model reduces to a convex domain in
an n-dimensional linear space over an ordered skew field.2 As a whole, the theory
of these models, including also the Huntington–Nuut theory for dimension 1, can
be called betweenness geometry. The same term was introduced independently in
a similar situation by Hashimoto [19] in 1958.

In 1970–80 Rubinshtein [20−22] developed (together with Rutkovskij) a theory
of axial structures. This theory is tightly connected with betweenness geometry
and uses some of its results (with exact references to [16,17]).

Independently there evolved also another approach, independent of the axioms
of connection. In 1909, Schur [23] tried to work out a part of geometry based on
the basic concepts “point” and “line segment” (Ger. Strecke). This approach was
elaborated in 1961 by Prenowitz [24] (see also [25,26]). The segment was considered
as the “join” of its endpoints, and so the join operation was introduced in the set
of points. This approach was then developed as the theory of convexity spaces in
the 1970s by Bryant and Webster [27], Doignon [28] and others (summarized in
papers [29−31], and in monographs [32,33]).

1 “Wouldn’t it be better to give the axioms in the second group a form which makes them
free of this dependence and separates them from the first group?”

2 Later Pimenov [18] (in Appendix: Local betweenness relation) called this perfected
axiomatics the Humal–Lumiste axiomatics and its model in dimension 2, when the above
result cannot be used, the Lumiste plane.
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In a recent paper [34] the author studied the relationship of betweenness
geometries with join geometries, treated in [32]. He proved there Theorems 14
and 15, according to which betweenness geometry coincides with the Pasch–Peano
geometry of [28]. Due to Theorems 16 and 18 of [34], betweenness geometry
coincides with convex geometry, according to the Theorem in Sec. 1.3 of [28].

Betweenness and convex geometries were developed by several authors to so-
called linear geometry (in the sense of [32,33,35,36]).

Betweenness geometry is tightly connected also with projective geometry (and
also with absolute geometry; see [37]). Already in [16], §20 and [17] it was
established that in the 3-dimensional betweenness space every bundle of lines
through a fixed point has the structure of a Desarguesian projective plane (see
also [34], Sec. 8). In the further study of the betweenness planes (which can also
be non-Desarguesian), which follows below, several constructions of the theory of
projective planes will be useful. First, however, betweenness geometry must be
recapitulated.

2. TOWARDS BETWEENNESS GEOMETRY

Recall that the author worked out betweenness geometry, considered here, more
than 40 years ago in [16,17], being guided by [13,15]. (Independently it was initiated
by Hashimoto [19].) Recently this geometry was recapitulated in [34] as follows.

Let S be a set, and let B be a subset in S×S×S (i.e. a ternary relation for S).
Further (abc) will mean that (a, b, c) ∈ B, then b is said to be between (or inter) a
and c. Moreover, let us denote

〈abc〉 = (abc)∨(bca)∨(cab); [abc] = 〈abc〉∨(a = b)∨(b = c)∨(c = a). (1)

The triplet (a, b, c) is said to be correct if 〈abc〉, and collinear if [abc].

Definition 1. The pair (S,B) is called an interimity model and B the interimity
relation if

B1: (a 6= b) ⇒ ∃c, (abc); B2: (abc) = (cba);

B3: (abc) ⇒ ¬(acb); B4: 〈abc〉 ∧ [abd] ⇒ [cda]; B5: (a 6= b) ⇒ ∃c,¬[abc].

For any two different a, b, a 6= b the subset ab = {x|(axb)} is called an interval
with ends a and b, and the subset Lab = {x|[xab]} is said to be a line through a
and b.

For any non-collinear a, b, c the subset Pabc = Qa ∪ Qb ∪ Qc, where Qa =
Lab∪Lac

⋃
x∈bc Lax, is called a plane through a, b, c. Here Qb and Qc are obtained

by reordering a, b, c in the definition of Qa; hence Pabc does not depend on this
reordering.

A one-to-one map f : S → S of an interimity model onto itself is said to
be a cointerrelation if (abc) ⇒ (f(a)f(b)f(c)), i.e. if the interimity relation
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remains valid by f . Then this f is also a collineation, because due to (1),
[abc] ⇒ [f(a)f(b)f(c)], i.e. every collinear point-triplet maps into a collinear
point-triplet, hence every line maps into a line.

The basic concept will be introduced by the following

Definition 2. If in an interimity model, in addition,

B6: ¬[abc] ∧ (abd) ∧ (bec) ⇒ ∃f, ((afc) ∧ (def)),

then this model is called a betweenness model and its relation is said to be the
betweenness relation (see [16,17]).

A subsidiary concept gives now the following

Definition 3. If in an interimity model B6 is replaced by

B6′: ¬[abc] ∧ (abd) ∧ (aec) ⇒ ∃f, ((bfc) ∧ (dfe)),

then this model is called a betwixtness3 model and its relation is said to be the
betwixtness relation.

The connecting instrument for the betweenness and betwixtness models is the
so-called Pasch postulate

P: ¬[abc] ∧ (bec) ∧ (d ∈ Pabc) ∧ (d 6∈ Lbc) ∧ (a 6∈ Lde)

⇒ ∃f, (f ∈ Lde) ∧ [(afb) ∨ (afc)].

The above postulates B6 and B6′ can be considered as forms of this Pasch
postulate in terms of the initial betweenness and betwixtness relation, respectively.4

It is natural to start with the interimity model.

Lemma 4. In an interimity model (abc) implies that a, b, c are three distinct points.

Proof. Indeed, B3 excludes b = c, and together with B2 excludes also b = a.
Finally, a = c is impossible as well, because if c = a, then b 6= a and due to
B5 ∃d,¬[abd], but on the other hand (abc) ⇒ 〈acb〉 and (a = c) ⇒ [acd], and
these together imply due to B4 that [dba] = [abd], but this contradicts ¬[abd] and
finishes the proof.

3 Here the word “betwixt” has been in mind (which, according to dictionaries, is now archaic
except in the expression betwixt and between), as well as the word “interim”.

4 They are called the outer and inner Pasch axioms, respectively, and denoted by OP and IP
(see [36], where it is proved that IP does not imply OP, while OP does imply IP, accord-
ing to [6]; see also [16], Theorem 13, and [34], Theorem 11; this means that every between-
ness model is also a betwixtness model, but not vice versa).
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If a triplet a, b, c is correct, i.e. 〈abc〉, then due to Lemma 4 here a, b, c are three
different points, and due to B2, B3 only one of them is between the two others.
Recall that if [abc], then a, b, c are said to be collinear. It is obvious that correctness
and collinearity of any three a, b, c does not depend on their order, i.e.

〈abc〉 = 〈bca〉 = 〈cab〉, [abc] = [bca] = [cab]. (2)

Lemma 5. In an interimity model let a, b, c be collinear, i.e. [abc] and so (1) holds.
Here only the following four possibilities occur:

1) (a = b) ∨ (b = c) ∨ (c = a), 2) (abc), 3) (bca), 4) (cab).
Each of them excludes the three others.

Proof. The first possibility follows from Lemma 4. Due to B2, B3, (abc) =
(cba) ⇒ ¬(cab), (abc) ⇒ ¬(acb) = ¬(bca). Due to the same Lemma 4,
(abc) ⇒ ¬[(a = b) ∨ (b = c) ∨ (c = a)].

Lemma 6. In an interimity model there hold

¬[abc] ∧ 〈abd〉 ⇒ ¬[acd], (3)

¬[abc] ∧ [abd] ∧ [adc] ⇒ (a = d), (4)

(abc) ∧ (bcd) ⇒ 〈abd〉, (5)

¬[abc] ∧ (adb) ∧ (aec) ⇒ d 6= e. (6)

Proof. Let us suppose for (3), by reductio ad absurdum, that [acd]. Then due to (1)
and B4, 〈abd〉 ∧ [acd] = 〈adb〉 ∧ [adc] ⇒ [bca] = [abc], but this is impossible.

For (4), ¬[abc] ⇒ (a 6= b), ¬[abc] ∧ [adc] ⇒ (b 6= d); now by reductio ad
absurdum,

[abd] ∧ (a 6= b) ∧ (b 6= d) ∧ (a 6= d) ⇒ 〈abd〉 = 〈adb〉
and then due to B4 〈adb〉 ∧ [adc] ⇒ [bca] = [abc], but this is impossible.

For (5), due to Lemma 4, (abc) ∧ (bcd) ⇒ (a 6= b) ∧ (b 6= d). Also d 6= a,
because otherwise, due to B2, (bcd) = (bca) = (acb) and, now due to B3, ¬(abc),
which is impossible. Further, due to (1), (abc) ∧ (bcd) = 〈bca〉 ∧ [bcd], and now
due to B4, [adb], which is, due to (1), equivalent with [abd], but this together with
(a 6= b) ∧ (b 6= d) ∧ (d 6= d) implies 〈abd〉, as needed.

For (6), (adb) ⇒ [abd], and now, by reductio ad absurdum, if one supposes
d = e, then (aec) = (adc) ⇒ [adc], and (4) would yield a = d. On the other hand,
due to (1), (adb) ⇒ a 6= d, which gives a contradiction.

This finishes the proof.

For a line the following assertions can be proved, which show that in an
interimity model the points a, b are not some specific points of a line Lab, but can
be exchanged by every two of its different points c, d. Indeed, there holds
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Lemma 7. If c ∈ Lab and c 6= a, then Lac = Lab.

Proof. This is obvious if c = b. Otherwise [abc] ∧ (a 6= b) ∧ (b 6= c) ∧ (c 6= a) ⇒
〈abc〉 and, due to B4, 〈abc〉 ∧ [abx] ⇒ [cxa], thus x ∈ Lab ⇒ x ∈ Lac. But also
〈acb〉 ∧ [acy] ⇒ [bya], thus y ∈ Lac ⇒ y ∈ Lab.

Using this Lemma two times, one obtains

Theorem 8. If in an interimity model two different points c, d belong to a line Lab,
then Lcd = Lab.

Hence, a line is uniquely determined by any two of its different points.

Recall that in the definition of a line Lab due to (1) [xab] = (xab) ∨ (abx) ∨
(bxa)∨ (x = a)∨ (x = b) (note that here a = b is excluded). Hence a and b divide
the remaining part of Lab into three subsets: 1) ab = {x|(axb)} (note that, due to
B2, ab = ba), 2) a/b = {x|(xab)}, and 3) b/a = {x|(abx) = (xba)}.

Recall that ab is the interval with ends a and b; further, a/b will be called its
extension over an end a.

It follows that Lab = ab∪ (a/b)∪ (b/a)∪ a∪ b, i.e. a line Lab is a union of an
interval, its ends, and its extensions over both ends.

Note that up to now only B1−B4 are used and, in an extreme case, S can
consist only of the points of one and the same line Lab.

Further let also B5 be taken along. Here ¬[abc] means that a, b, c are three
non-collinear points, i.e. three different points, not belonging to one line.

If a, b, c are non-collinear, then they are said to be vertices; the intervals
bc, ca, ab are the sides (opposite to a, b, c, respectively) of the triangle4abc, which
is considered as the union of all of them.

Here a/b and b/a are the extensions of the side ab, and ab ∪ a ∪ b is the closed
side.

Note that the subset Qa = Lab∪Lac
⋃

x∈bc Lax in the definition of a plane Pabc

can now be interpreted as the union of points on the lines, which are determined by
a vertex a of the triangle 4abc and the points of its opposite closed side.

The plane Pabc itself can be interpreted as the union of the points on the lines,
which are determined by any of the vertices and the points of its opposite closed
side of a triangle 4abc.

An interimity model will turn into a betweenness model if one adds B6 to
B1–B5. The premise ¬[abc] of B6 means that there exists a triangle 4abc. The
other premises (abd) ∧ (bec) mean that there are d ∈ b/a and e ∈ bc, where the
side bc and extension b/a have a common endpoint b.

Note that here the premises of B6′ differ from those of B6 only by the fact that
e ∈ bc is replaced by e ∈ ac and so bc is changed by the side ac, which does not
have a common endpoint with the extension b/a.

The theory of the betweenness model, called betweenness geometry, is
developed in [34], where the following theorems have been proved:
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(1) Every betweenness geometry is also a betwixtness geometry, i.e. if B1–B6
hold, then also B6′ holds (Theorem 11 in [34]).

(2) The interval ab is not empty but is an infinite subset (Theorem 12 in [34]).
(3) For a triangle 4abc, the subset {x|∃y, (byc) ∧ (axy)} does not depend on the

reordering of vertices a, b, c (Theorem 13 in [34]).
It is natural to call the subset considered in the last theorem the interior of the

triangle 4abc. Here any permutation of a, b, c is admissible.
The interpretation of the Pasch postulate P can be detailed as follows. Its

premises mean that there is a line Led, which is determined by a point e of a side
bc of the triangle4abc and a point d of the plane Pabc of this triangle, and does not
contain any of its vertices. The assertion is that this line must intersect at least one
of the other two sides in a point f . (Both of these cannot intersect, because this is
excluded by Lemma 6 in [34].) Briefly: If a line in a plane of a triangle intersects
one side and does not contain any of the vertices, then it intersects one of the other
two sides (but not both of them).

Theorems 14 and 15 of [34] state the following:
In betweenness geometry the Pasch postulate is valid. In an interimity geometry,
the Pasch postulate P yields B6, i.e. one can obtain a betweenness geometry
adding P, instead of B6, to B1–B5.

3. COORDINATES AND TERNARY OPERATION

Coordinates and the ternary operation, introduced for the projective plane by
Hall [38] (see also [39,40]), can also be defined for a betweenness plane.

Let O, X , Y be some three non-collinear points of the betweenness plane and
E be a point in the interior of the triangle4OXY , i.e. ∃F, (OEF )∧ (XFY ). The
line LOX with the point X excluded will be called the x-axis, the line LOY with Y
excluded the y-axis, and the line LXY with Y excluded the [ξ]-axis.

To the points of the line LOE the coordinates (a, a) will be assigned, where
these a are symbols, different for different points. In particular, to O and E the
symbols 0 and 1 will be assigned, respectively; thus O = (0, 0) and E = (1, 1). If
for a point p the line LY p intersects LOE in (a, a) and the line LXp intersects LOE

in (b, b), then to p the coordinates (a, b) will be assigned. Then the intersection
points of these lines with the x-axis and y-axis, respectively, are (a, 0) and (0, b).

On the [ξ]-axis the symbol [m] will be assigned to the point, which is collinear
with (0, 0) and (1,m). For instance, [1] is collinear with O = (0, 0) and E = (1, 1)
(and also with every (a, a)).

The ternary operation, which was originally defined for the projective
plane [38−40], can be applied in the case of the betweenness plane. Namely, for
the sides OX and OY of the triangle 4OXY let this operation be defined by the
following construction.

Let (x, 0), [m], (0, b) be points of the appropriate sides. Due to B6′ there
exists a point q such that ((x, 0)qY )∧((0, b)qX), and then p such that ((0, b)p[m]).
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Further, ¬[(0, 0)(x, 0)Y ] ∧ ((0, 0)(x, 0)X) ∧ ((x, 0)pY ); hence, due to B6, there
exists such a point (0, y) that ((0, 0)(0, y)Y ). Here this y will be defined as the
result of the ternary operation:

y = x ◦m÷ b; (7)

this definition can be extended naturally also to x = 0, m = 0, or b = 0.
This ternary operation has the following properties:

0 ◦m÷ b = x ◦ 0÷ b = b, (8)

1 ◦m÷ 0 = m ◦ 1÷ 0 = m, (9)

x ◦m÷ z = y can have only unique solutionwith respect to z, (10)

x ◦m1 ÷ b1 = x ◦m2 ÷ b2 (withm1 6= m2) can have
only unique solution with respect to x, (11)

system a1 ◦m÷ b = c1, a2 ◦m÷ b = c2 (with (a1, c1) 6= (a2, c2))
can have only unique solution with respect to the pair m, b. (12)

The properties (8), (9), and (10) follow immediately from the definition (7). For
(11) the construction of x can be seen if one makes a suitable figure; uniqueness
can be proved easily. (If m1 = m2, then no solution exists, in general, unless
also b1 = b2, when the solution x becomes arbitrary.) To verify (12), let (7) be
considered as the equation of the line L[m](0,b), and let us state that only one line
can pass through two different points.

As a consequence, the following properties can be obtained:

x ◦m÷ b = c (m 6= 0) can have only a unique solution with respect tox, (13)

a ◦ ξ ÷ b = c (a 6= 0) can have only a unique solution with respect to ξ. (14)

Indeed, due to (11), the equation x ◦ m ÷ b = x ◦ 0 ÷ c (with m 6= 0) can
have only a unique solution x. But due to (8), x ◦ 0 ÷ c = c. This verifies (13).
Further, due to (12), the system a ◦ ξ ÷ y = c, 0 ◦ ξ ÷ y = b (with a 6= 0) can have
only a unique solution with respect to the pair ξ, y, but due to (8), here y = b. This
verifies (14).

Following Hall [38,40], natural operations + and · can be defined by this ternary
operation, now for the betweenness plane:

a + b = (a ◦ 1)÷ b, (15)

a ·m = (a ◦m)÷ 0. (16)
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These operations have the following properties:

a + 0 = 0 + a = a, (17)

m · 0 = 0 ·m = 0, (18)

m · 1 = 1 ·m = m, (19)

a + x = c can have only a unique solutionwith respect tox, (20)

x ·m = c (m 6= 0) can have only a unique solution with respect tox, (21)

a · ξ = c (a 6= 0) can have only a unique solution with respect to ξ. (22)

The properties (17)–(19) follow immediately from (8) and (9). The properties
(20)–(22) follow, respectively, from (12)–(14).

4. ALGEBRAIC EXTENSION OF A GIVEN BETWEENNESS PLANE

For a betweenness plane there exists a linear order on every line. This order
on the lines through O = (0, 0) can be chosen so that E follows O; then on the
x-axis (1, 0) follows O = (0, 0), and on the y-axis (0, 1) follows O = (0, 0). For
all points (a, 0) of the side OX on the x-axis then a > 0; similarly, for all points
(0, a) of the side OY on the y-axis a > 0.

Let us consider Eq. (20) with c = 0 and a > 0; i.e. the equation a + x = 0
with a > 0. It is natural to denote the unique solution of this equation, if it exists,
by x = −a, so that a + (−a) = 0; here naturally −a < 0. The point (0,−a), if it
exists, lies in the remaining part of the y-axis, except Y .

Considering the tetragon with vertices (a, 0), (a, a), [1], X , one can see that
one of its diagonals intersects the y-axis LOY at the point (0, a), the other at the
point (0,−a). Hence the pair of points (0, a), (0,−a) is harmonic with respect to
the pair (0,0), Y . But there is the possibility that this intersection point (0,−a)
does not really exist in the considered betweenness plane. Then it will be added
as an ideal point, following the procedure which is given for projective planes by
Moufang [41] and Sperner [42] to expand a limited plane part by adding the ideal
points.

For the points (0,−y) of the y-axis, including the ideal ones, each of which
forms with (0, y) ∈ OY , y > 0, a harmonic pair with respect to the pair O, Y , as
above, there exists −y < 0. The same procedure can be performed on the x-axis:
the points (0,−x), harmonic with respect to O, X , including the ideal ones, can be
added to the points (x, 0) ∈ OX .

The ternary operation can be extended as well, carrying the ideal points not
only on the x- and y-axes, but also on the [ξ]-axis. After that this operation works
on a linearly ordered set (called in [39] the ternar).

Introducing the ideal points (x, y) as the intersection points of LY (x,0) and
LX(0,y), where one of (x, 0), (0, y) is ideal (or both of them are ideal), one extends
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the given betweenness plane to an ordered projective plane with a ternary operation.
In the properties (10)–(14), (20)–(22) the words can have only may be then replaced
by has, and one has the so-called complete linearly ordered ternar.

Theorem 9. By means of a complete linearly ordered ternar with elements
a, b, ..., x, y, ... a betweenness plane can be constructed, taking the pairs (a, b) as
the points and considering (a2, b2) being between (a1, b1) and (a3, b3) if either
(1) there exist m, b so that bi = ai ◦m ÷ b for i ∈ {1, 2, 3} and a2 is between a1,

a3, like b2 is between b1, b3 in this ordered ternar, or
(2) a2 is between a1, a3, and b2 = b1 = b3, or
(3) a2 = a1 = a3 and b2 is between b1, b3.

Proof. For the set of these points (a, b), with this relation “between”, the axioms
B1–B4 are satisfied, because they hold for the set of the ternar’s elements, as the
linearly ordered set. Here the lines are the subsets {(x, x ◦m ÷ b)}, {(x, b)}, and
{(a, y)}. For each of them there exist points not belonging to this line. Hence B5
is also satisfied.

For a line {(x, y)|y = x ◦m ÷ c} the two complementary half-planes, whose
edge is this line, are {(x, y)|x ◦ m ÷ c < y} and {(x, y)|x ◦ m ÷ c > y}. The
validity of the Pasch postulate can be established in the following way.

On the betweenness plane just constructed, let the triangle with vertices (ai, bi),
i ∈ {1, 2, 3} be such that its vertices (a1, b1) and (a2, b2) belong to the two different
half-planes above and the third vertex (a3, b3) is not on the line above. Then
a1 ◦m÷ c < b1 and a2 ◦m÷ c > b2, but a3 ◦m÷ c 6= b3. Here a3 ◦m÷ c < b3

or a3 ◦m÷ c > b3, but not both together. In the first case the vertices (a2, b2) and
(a3, b3) are in the two different half-planes, i.e. the line above intersects the side
between them. In the first case the same can be said for the vertices (a1, b1) and
(a3, b3). So the Pasch postulate is valid, and thus the proof is finished.

If the complete linearly ordered ternar in this theorem is obtained by the above
extension of the ternar of a given betweenness plane, then the new betweenness
plane, constructed according to this theorem, can be seen as an algebraic extension
of the given plane. The latter is then a convex subset of the extended betweenness
plane. Here convex means that with any two different points a, b it contains also the
interval ab.

5. COLLINEATIONS AND LENZ–BARLOTTI CLASSIFICATION

A one-to-one map f : S → S of a betweenness plane onto itself is said to be
a collineation if (abc) ⇒ (f(a)f(b)f(c)), i.e. if the betweenness relation remains
valid under f . Then, due to (1), also [abc] ⇒ [f(a)f(b)f(c)], i.e. every collinear
point-triplet maps into a collinear point-triplet, hence every line maps into a line;
from this stems the term “collineation”. If considering the projective plane obtained
by algebraic extension, one has here a collineation in the sense of the theory of
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projective geometry. The only difference is now that the linear order on every line
of the betweenness plane remains invariable.

If the collineation has a fixed point z and a fixed line A, so that all lines through
z and all points of A also remain fixed, then this collineation is called (z, A)-col-
lineation, with centre z and axis A.

If there is a fixed point z and a fixed line A on the plane, so that the group
of all (z, A)-collineations acts transitively on this plane, then the plane is said to
be (z, A)-transitive. There exist the algebraic properties of the betweenness plane,
which are equivalent to the (z,A)-transitivity.

Let the coordinates on the (z,A)-transitive betweenness plane be taken so that
LXY = A and Y = z, and let us consider the (Y,LXY )-collineation f such that
f(O) = (0, b). Then all lines through Y remain invariant by f , like all points of
the line LXY , in particular X , [1], and [m].

According to the construction, which led above to the result (1), there is a
point p with coordinates (x, x ◦m ÷ b), and a point u which has, due to (10), the
coordinates (x, x ·m). There is a point w which belongs to the line LO[1] and thus
has the coordinates (x ·m,x ·m). Due to (9), there is a point r with coordinates
(x ·m,x ·m + b).

Since the points [m] and [1] are fixed by the f under consideration, like the
lines through Y , it holds that f : u → p, f : w → r. Also the point X is fixed.
Since u,w are collinear, lying on a line through X , the corresponding p, r must lie
on a line through X . Therefore their second coordinates must be

x ◦m÷ b = x ·m + b. (23)

Hence for a (Y, LXY )-transitive betweenness plane the ternary operation is
composed of two binary natural operations.

Further, it can be proved that, with respect to the natural operation of addition,
the considered linearly ordered ternar forms a group. It is sufficient to show that
this addition is associative, having in mind the properties (17) and (20).

Let us consider the (Y,LXY )-collineation f above. Here y = x transforms to
y = x + b; x = c to x = c; (c, c) to (c, c + b); y = c to y = c + b; and also x = a
to x = a.

Hence f((a, c)) = (a, c + b). Let now the same be done with (Y,LXY )-
collineation g, defined by g(O) = (0, d). The result is that g((u, v)) = (u, v + d).
For the product gf there exist

(gf)(O) = g(f(O)) = g((0, b)) = (0, b + d).

Consequently, in general, (gf)((a, c)) = (a, c + (b + d)). But g(f(a, c)) =
= g((a, c + d)) = (a, (c + b) + d). Hence

c + (b + d) = (c + b) + d, (24)

i.e. addition has, indeed, the associativity property.
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Conversely, if the ternar of a betweenness plane has the properties (23) and
(24), i.e. if a) the ternary operation is composed of two natural binary operations:
addition and multiplication, and b) with respect to the addition one has a linearly
ordered group, then this plane is (Y, LXY )-transitive.

Indeed, let us consider for an arbitrary b a map f , which leaves Y and [m]
invariant and transforms (a, c) to (a, c + b), and also leaves the lines LXY and
x = a invariant and transforms the line y = x ·m+ t to the line y = x ·m+(t+b).
This f is a collineation, because if a point (a, c) lies on the line y = x ·m + t, then
c = a ·m + t, and thus

c + b = (a ·m + t) + b = a ·m + (t + b),

i.e. the point (a, c+b) lies on the line y = x·m+(t+b). Moreover, this collineation
f is a (Y, LXY )-collineation. Since b is arbitrary, the plane is (Y,LXY )-transitive.
For the projective planes Lenz [43] gave in 1954 a classification considering the set
L of all pairs (z,A) with z ∈ A such that the plane is (z, A)-transitive. He obtained
seven classes: I (this set is empty) – VII (this set contains all such pairs), where IV
and VI are both subdivided into two subclasses: a and b.

Three years later Barlotti [44] perfected this classification by abandoning the
condition z ∈ A and excluding class VI, which turned out to be empty, according
to a result by H. F. Gingerich in 1945 (see [45], p. 103).

In [46] the Lenz–Barlotti classification is presented as follows (the classes
of [43], which turned out to be empty, are excluded).

Let B be the set of all pairs (z, A) with z 6∈ A such that the plane is (z, A)-
transitive. The classes are now the following.

I1. L=∅=B.
I2. L = ∅, |B| = 1.
I3. L = ∅, |B| = 2, where |B| is the power of the set B (i.e. B =

{(z1, A1), (z2, A2)}) and z1 ∈ A2 \A1, z2 ∈ A1 \A2.
I4. L=∅, |B| = 3, and B= {(a, Lbc), (b, Lca), (c, Lab)} with non-collinear

a, b, c.
I5. L=∅. There exists a point a and a line A with a ∈ A, and a bijection β of

A \ {a} onto the set of lines X with a ∈ X,X 6= A such that B =
{(x, β(x))|x ∈ A \ {a}}.

II1. |L| = 1 and B= ∅.
II2. |L| = 1 = |B| and for B= {(b, B)} there is b ∈ A and a ∈ B.
II3. |L| = 1 and B is such as in I6, while (a,A) ∈ L.

III1. There exists only one point a and one line Z with a 6∈ Z so that L =
{(z, Lza)|z ∈ Z} and B= ∅.

III2. There exists only one point a and one line Z with a 6∈ Z so that L =
{(z, Lza)|z ∈ Z} and B= {(a, Z)}.

IVa1 . There exists only one line A with L= {(z, A)|z ∈ A} and B= ∅.
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IVa2 . There exists only one line A with L= {(z,A)|z ∈ A}. There exist
a, a′ ∈ A, a 6= a′ and the lines X, Y so that B= {(a,X)|a′ ∈ X} ∪
{(a′, Y )|a ∈ Y }.

IVa3 . There exists only one line A with L= {(z, A)|z ∈ A}. There exists an
involution β : A → A without fix points so that B= {(x,X)|x ∈ A,X 6=
A, β(x) ∈ X}.

IVb1 , dual to IVa1 .

V. There exists only one point a and one line Z with a ∈ Z so that L =
{(z, Z)|z ∈ Z} ∪ {(a,A)|a ∈ A} and B= ∅.

VII1. L= {(z, A)|z ∈ A} and B= ∅.
VII2. L= {(z, A)|z ∈ A} and B 6=L.

The same classification is presented in [47] as a table, where also the
corresponding ternar of each class is characterized. Moreover, the special features
of this classification for the ordered projective planes (and thus for betweenness
planes) are discussed in [47] (see also [48]).

6. TRANSLATION PLANE AND ORDERED QUASIFIELDS

If for a betweenness plane its algebraic extension is (z,A)-transitive for an
arbitrary centre z ∈ A, then it is called the translation plane with respect to the
axis A.

For this, it is sufficient that this plane is (z1, A)-transitive and (z2, A)-transitive
for two different centres z1, z2, on the axis A, i.e. z1, z2 ∈ A; z1 6= z2.

Indeed, let then z be an arbitrary point of A, z 6= z1, z2, and L a line through
z, L 6= A. Further, let u, v be two arbitrary points of L such that the lines Luz1

and Lvz2 intersect at a point w. There exists a (z1, A)-collineation f1 such that
f1(u) = w, and a (z2, A)-collineation f2 such that f2(w) = v. Then f = f2f1 is a
desirable (z, A)-collineation, which shows that one has the (z, A)-transitivity.

Let us consider now a betweenness plane which is a translation plane with
respect to the axis L. The coordinates on such a plane can be taken so that
LXY = A. This plane is (Y, LXY )-transitive and also (X,LXY )-transitive. Due
to the result of Sec. 5, the ternary operation is composed of two binary operations:
addition and multiplication, and with respect to the first of them, one has a linearly
ordered group. In the proof of this result there is a (Y, LXY )-collineation f with
the property f((a, c)) = (a, c+b). Similarly there exists an (X,LXY )-collineation
g with the property g((a, c)) = (a, c + d).

It appears that fg = gf . Indeed, for an arbitrary point u, u 6∈ LXY , one
has then collinears Y, u, f(u); X, u, g(u); Y, g(u), f(g(u)); and X, f(u), g(f(u)).
Here X, f(u), g(f(u)) = (gf)(u) are also collinear, like Y, g(u), f(g(u)) =
(fg)(u). Hence (gf)(u) and (fg)(u) are both the intersection points of two
different lines LXf(u) and LY g(u), thus gf = fg, as asserted.
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Since (gf)(a, c) = g(a, c+ b) = (a, c+ b+d) and (fg)(a, c) = f(a, c+d) =
(a, c + d + b), one has

b + d = d + b, (25)

i.e. the linearly ordered group is an Abelian group with respect to addition.
The complete linearly ordered ternar has the properties (19), (21), and (22) with

respect to multiplication, which shows that one has here a quasigroup with unit, i.e.
a loop.

There are some properties which connect these two binary natural operations:
addition and multiplication of the complete linearly ordered ternar.

Let us consider an (X, LXY )-collineation h such that h(0, 0) = (b, 0). Then
y = x transforms to y = x − b; y = a to y = a; (a, a) to (a + b, a); x = a to
x = a + b; y = a ·m to y = a ·m; (a, a ·m) to (a + b, a ·m); and y = x ·m to
y = x ·m− b ·m.

Since the point (a, a ·m) lies on the line y = x ·m, and the point (a + b, a ·m)
lies on the line y = x ·m− b ·m, there holds a ·m = (a + b) ·m− b ·m, thus

(a + b) ·m = a ·m + b ·m, (26)

i.e. the multiplication is right-distributive with respect to the addition.
The properties (11) and (23) give together the following:

x ·m1 = x ·m2 (withm1 6= m2) has a unique solutionwith respect tox. (27)

The ternar, 1) whose ternary operation is composed of its two binary natural
operations, 2) which is an Abelian group with respect to the addition and a loop
with respect to the multiplication, and 3) which has the properties (26) and (27),
has been considered in [49], therefore it is called a Veblen–Wedderburn system (also
said to be a quasifield).

For the betweenness plane this is, of course, the linearly ordered quasifield
(considered, e.g., by Jousson [50]).

7. ALTERNATIVE QUASIFIELD AND MOUFANG-TYPE PLANE

Let us consider the betweenness plane, whose algebraic extension gives the
ordered projective plane (with the excluded line LXY ), which is a translation plane
with respect to every line through the point Y as the axis. It is known that for
this it is sufficient that this plane is the translation plane with respect to two lines
intersecting in Y (see [40], Theorem 20.5.1).

Theorem 10. If the betweenness plane is such that its algebraic extension is a
translation plane with respect to every line going through the point Y , then
(1) all its lines, different from LXY , are given by the linear equations x = c and

y = x ·m + b, and
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(2) the coordinates are subjected to the following requirements:
2.1) according to addition, they form a linearly ordered Abelian group,
2.2) according to multiplication, they form a loop (quasigroup with unit),
2.3) (a + b) ·m = a ·m + b ·m,
2.4) a · (s + t) = a · s + a · t,
2.5) every element a 6= 0 has an inverse a−1 such that a ·a−1 = 1 = a−1 ·a,
2.6) a−1 · (a · b) = b.

Proof. Among the lines through the point Y there is the line LXY . Hence, due to
the results of the previous Sec. 6, here (1) and 2.1), 2.2), and 2.3) are valid.

To prove the remaining three requirements, let a (Y, A)-collineation be
considered, whose axis A is the line x = 0, going through the centre Y (in such
a case this collineation is called an elation, according to [40], §20.2), and which
maps the point X = [0] into the point [m]. Then all points (0, b) are invariant,
like the lines LXY and x = c. Here successively [0] 7→ [m], (0, b) 7→ (0, b),
y = b 7→ y = x ·m + b, x = a 7→ x = a, (a, b) 7→ (a, a ·m + b). In particular,
(1, t) 7→ (1,m + t) and (0, 0) 7→ (0, 0), hence y = x · t 7→ y = x · (m + t). But
(a, a · t) 7→ (a, a ·m+a · t), where (a, a · t) belongs to the line y = x · t. Therefore
(a, a ·m + a · t) belongs to the line y = x · (m + t); hence the left distributivity
requirement 2.4) is satisfied:

a ·m + a · t = a · (m + t). (28)

Now let us consider another elation, whose centre is (0, 0), axis x = 0, and
which maps X = [0] into (−1 − a, 0). For this (0, 1 + a) 7→ (0, 1 + a), thus
y = 1+a 7→ y = x+1+a. Further, [0] 7→ (−1−a, 0), (0, b+a·b) 7→ (0, b+a·b),
hence y = b + a · b 7→ y = x · b + b + a · b. Now y = 1 + a 7→ y = x + 1 + a,
y = x · (1 + a) 7→ y = x · (1 + a), hence (1, 1 + a) 7→ (d, d + 1 + a), if a 6= 0;
therefore

d · (1 + a) = d + 1 + a.

Further, Y 7→ Y , (1, 1 + a) 7→ (d, d + 1 + a), thus x = 1 7→ x = d. Consequently,

y = x · (b + a · b) 7→ y = x · (b + a · b),

y = b + a · b 7→ y = x · b + b + a · b,
hence (1, b + a · b) 7→ (d, d · (b + a · b)), where d · (b + a · b) = d · b + b + a · b.

Let now not only a 6= 0 but also (−1−a, 0) 6= (0, 0), i.e. a 6= −1. For such an
element there exists a d, so that d·(1+a) = d+1+a and d·(b+a·b) = d·b+b+a·b
for an arbitrary b. Taking d = u + 1 and using the distributive property, one
finds that ua = 1 and u · (a · b) = b. For a = −1 these relations remain valid
if u = −1. Since for u 6= 0 there exists such an element v that vu = 1 and
v · (u · a) = a, it follows that v = a. Consequently, u = a−1, and the result will
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be 2.5): a · a−1 = a−1 · a = 1, and also 2.6): a−1 · (a · b) = b. This finishes the
proof.

One more identity may be deduced following Bruck [51]. Let there be

[y−1 − (y + z−1)−1] · [y · (z · y) + y] = t,

where y 6= 0, y 6= −z−1. Multiplying here by y + z−1, one obtains

(y + z−1) · t = (y + z−1)[zy + 1− (y + z−1)−1(y · (z · y))− (y + z−1)−1y]

= y · (z · y) + y + y + z−1 − y · (z · y)− y = y + z−1.

Hence, t = 1, and the elements y−1 − (y + z−1)−1 and y · (z · y) + y are inverse
to each other. Then for an arbitrary x there exists

[y−1 − (y + z−1)−1] · [(y · (z · y)) · x + y · x] = x.

If one denotes

[y−1 − (y + z−1)−1] · [y · (z · (y · x)) + y · x] = w,

then

(y + z−1) · w = (y + z−1)[z · (y · x) + x]− y · [z · (y · x)]− y · x

= y · x + z−1 · x = (y + z−1) · x.

Consequently, w = x. Comparing the expressions for w and x, one obtains

[y · (z · y)] · x = y · [z · (y · x)]. (29)

This identity is called the Moufang identity; it is valid also for the excluded values
y = 0, y = −z−1, thus for all elements.

In particular, for z = 1 there follows the left alternativity:

(y · y) · x = y · (y · x). (30)

A ternar, satisfying the conditions (2.1)–(2.6), (29), and (30), is called an
alternative quasifield. A projective plane with such a ternar is said to be a Moufang
plane.

A betweenness plane whose algebraic extension gives a Moufang projective
plane is said to be the Moufang-type betweenness plane. For such a plane the
following algebraic result (Skornyakov [52], Bruck and Kleinfeld [53]) is important:

Every ordered alternative quasifield is a skewfield.
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For betweenness planes this means:
Every Moufang-type betweenness plane is Desarguesian.
Note that for the ordered projective planes this statement is formulated in [47],

p. 264, and in [46], p. 135.
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Vahelsustasandi geomeetria ja selle seos
kumer-, lineaar- ning projektiivtasandi geomeetriaga

Ülo Lumiste

Ühes oma varasemas artiklis on autor käsitlenud uudselt vahelsusgeomeetriat,
mis arendati O. Vebleni, J. Sarve, J. Hashimoto ja autori enda poolt välja
aastail 1904–1964. Samuti on käsitletud selle geomeetria seost W. A. Prenowitzi
ühenduvuse (join) geomeetriaga. Käesolevas artiklis on see seos laiendatud
kumer- ja lineaargeomeetriani. Projektiivtasandi geomeetria rohked saavutused on
rakendatud vahelsustasandi geomeetria rikastamiseks koordinaatide, ternaaroperat-
siooni, algebralise laienduse, Lenzi–Barlotti klassifikatsiooni, translatsioonide
ja Moufangi-tüüpi vahelsustasandi mõiste sissetoomisega. Käsitluse lõpus on
nenditud, et iga viimast tüüpi vahelsustasand on desargiline.

251


