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On the exploitation of the Eshelby stress
in isothermal and adiabatic conditions
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Abstract. This note emphasizes the particular role played by the quantity “entropy multiplied
by temperature” in the formulation of canonical thermomechanics either in the bulk or at
singular surfaces, especially at shock waves and phase transition fronts, but more generally
when working hypotheses of adiabatic or isothermal behaviour must be selected.
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1. INTRODUCTION

The material stress tensor, known as the Eshelby stress, plays a fundamental
role in the study of forces, which are driving defects and field singularities in
thermomechanics. Since its definition [1] involves both the potential energy and
the stress, and the corresponding driving force has a thermodynamic nature, the
thermodynamic conditions in which we apply this concept are most relevant, in
particular, whether isothermal or adiabatic conditions prevail during the motion of
the said defects or singularities. This question has been discussed in [2−5] and is
revisited in greater detail in this contribution. Indeed, if θ and S are temperature
and entropy per unit reference volume, and W and E are free and internal energies,
also per unit reference volume, then we usually have the following relations:

W (., θ) = E(., S)− Sθ, S = −∂W

∂θ
, θ =

∂E

∂S
> 0, (1)
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where the first one is a celebrated Legendre transformation. Replacing the dots by
the deformation gradient F of the finite strain theory in expression (1), we have
the standard theory of thermoelasticity, which is complemented by Fourier’s law
of heat conduction. In the sequel the transformation term (Sθ) will be shown to
play a more important part than usually assumed. This is due to its appearance as a
natural basic energy (Section 2), and also due to its role in the definition of various
Eshelby-like tensors in the bulk (Section 3) or at a discontinuity surface (Section 4).

2. CANONICAL BALANCE LAWS OF MOMENTUM AND ENERGY

In all field theories of which continuum mechanics offers the paragon, there
are balance laws (e.g., mass, linear momentum, energy) and canonical conservation
equations. In a most general setting, it was recently shown in continuum mechanics
that a set of consistent space-like and time-like conservation laws of momentum
and energy is given by the following two equations (in the absence of body force
and material inhomogeneities) [6]:

dP
dt

−∇R · b = f int,
d(Sθ)

dt
+∇R ·Q = hint, (2)

where
P = −ρ0v · F, b = − (LW1R + TF) , (3)

f int = T : (∇RF)T −∇R W |impl , hint = T : Ḟ− ∂W

∂t

∣∣∣∣
X

. (4)

Here, 1R is the unit tensor in material space, a superimposed dot denotes the
material time derivative, the subscript “impl” means the gradient taken only through
the field variables, and

v =
∂x
∂t

∣∣∣∣
X

, F =
∂x
∂X

∣∣∣∣
t

(5)

are the physical velocity and deformation gradient if x = x(X, t) is the direct
motion; ρ0 is the matter density at the reference configuration, P is the canonical
(or material) momentum, b is the Eshelby material stress tensor, LW = K −W ,
K = ρ0v2/2, Q is the material heat flux, and f int and hint are “internal sources”
of momentum and energy of unknown expression before a postulate of an energy
expression (for other notations see [6]). For instance, in standard thermoelasticity,
we select W = W (F, θ) as being the free energy. Then Eqs (2) reduce to

dP
dt

−∇R · bW = f int := S∇R θ,
d(Sθ)

dt
+∇R ·Q = hint := Sθ̇, (6)

where

bW = − (
K −W (F, θ)

)
1R −T(F, θ)F, T =

∂W (F, θ)
∂F

∣∣∣∣
θ

, (7)
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while Eq. (6)2 is none other than the classical heat propagation equation

θṠ +∇R ·Q = 0, S = − ∂W

∂θ

∣∣∣∣
F

. (8)

3. BULK CASE

Had we chosen to work with the internal energy E per unit reference volume
such that (cf. Eq. (1))

E = E(F, S), θ =
∂E

∂S

∣∣∣∣
F

, T =
∂E

∂F

∣∣∣∣
S

(9)

for a materially homogeneous thermoelastic material, we would have obtained the
(non)conservation of material momentum in the following form:

dP
dt

−∇R · bE = f th
S , (10)

bE = − (LE1R + TF) , LE = K − E(F, S), f th
S = −θ∇RS. (11)

In particular, we note the following relationship

f th := f th
θ = f th

S +∇R · (Sθ1R) . (12)

This has consequences at discontinuity surfaces, which may be homothermal or
essentially considered in the adiabatic framework although related to a dissipative
progress.

4. THE CASE OF SINGULAR SURFACES:
SHOCK WAVES AND PHASE-TRANSITION FRONTS

In the case of the propagating singular surface S (with unit oriented normal
N), entirely described in the material framework, it is clear that the presence of
such a surface breaks the translational invariance on the material manifold, since
the material will in general have acquired different material properties on both sides
of the surface. Accordingly, the central equation – the one which will deliver the
driving force on the singular surface – is the jump relation associated with the
regular bulk equation of material (or canonical) linear momentum, because this
equation contains the “material force” generated by a material displacement of S

on the material manifold. The classical jump relations of mass, linear (physical)
momentum, and energy at S read (cf. [7])

(V ·N)[ρ0] = 0, (13)
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N · [T + V ⊗ p] = 0, (14)

N · [VH + Tv −Q] = 0, (15)

where V is the material velocity of S, H = K + E, i.e., the sum of kinetic and
internal energies, p = ρ0v is the linear momentum. These equations do not exhibit
source terms. This is not the case with the jump relations associated with material
momentum and entropy (canonical (non)conservation laws):

N · [b + V ⊗P] + fS = 0, (16)

N ·
[
VS − Q

θ

]
− σS = 0, (17)

with the constraint (second law of thermodynamics at S)

σS ≥ 0. (18)

Here source terms fS and σS are unknown, as well as V! Accordingly, the
interesting relationship is the one that relates the unknown driving force fS and
the equally unknown (but non-negative) surface entropy source σS. If the theory is
consistent, these cannot be entirely independent. The consistency condition looked
for in fact allows one to close the system of phenomenological equations at S in
compliance with the second law.

4.1. Shock waves

For classical shock waves (in the so-called inconsistent theory, where a
dissipative interface across which entropy grows is supposed to connect two
regions nonetheless in the adiabatic regime; Q = 0), one sets

fS = 0, ∀V 6= 0, (19)

and there remains the trivial relation

σS = [S](V ·N) ≥ 0, (20)

which tells in which direction (with respect to N) the wave front moves to guarantee
an increase in entropy, while one has to specify in terms of which energy fS is
defined. Indeed, Eq. (16) can be expressed from the start in terms of bW or bE .
Accordingly, we should write either

N · [bW + V⊗P] + fS,W = 0 (16a)

or

N · [bE + V⊗P] + fS,E = 0, (16b)
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with
fS,W = fS,E + N[Sθ], (21)

while the entropy jump relation (17) can be rewritten as

V N [S]−N · [Q]
〈

1
θ

〉
−N · 〈Q〉

[
1
θ

]
= σS. (22)

Here the symbols [. . .] and 〈. . .〉 denote, respectively, the jump and mean value of
the enclosed quantity at S.

Both adiabatic and non-adiabatic conditions can be summarized in the “product
equation” (not a physical equation; i.e., either one of the factors in the left-hand side
may vanish [2])

Q[θ] = 0. (23)

Therefore, necessarily

N · [Q]
(〈

1
θ

〉
− 1
〈θ〉

)
= 0 and N · 〈Q〉

[
1
θ

]
= 0. (24)

Substituting the normal jump of Q from Eq. (15), taking account of (16a) and (22)
and the expression of the power expended by fS,W in the material motion V, we
obtain that

σS =
1
〈θ〉

(
fS,W −N〈S〉[θ]) ·V, (25)

which provides the effective driving force acting on S (i.e., the factor of V). A dual
formula involving the jump of entropy was obtained in [7]. On account of (21), we
have thus

σS =
1
〈θ〉 fS,E ·V + [S]

(
V ·N)

, (26)

and we have to compute

fS,E ·V = − [
E(V ·N)− 〈N ·T〉 · FV

]
. (27)

Projected onto the unit normal N, the first of (19) then is none other than the
celebrated Hugoniot equation of the shock-wave theory, i.e.,

Hugosw = [E − 〈N ·T〉 · FN] = 0. (28)

In these conditions we check that fS,W = N[Sθ] in agreement with (21), while (19)
holds good.
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4.2. Phase-transition fronts

For coherent phase-transition fronts for which

[V] = 0, [θ] = 0, (29)

across S, the above-given formula (25) reduces to

σS =
fS ·V

θS
=

fSV N

θS
≥ 0, (30)

where θS is the value of θ at S, V N = V · N is the normal speed of S, and the
scalar surface driving force fS is given by

fS = −Hugopt, Hugopt = [W − 〈N ·T〉 · FN] , (31)

and is generally not zero (it is zero for the nondissipative Landau theory of phase
transitions where the vanishing of fS is a mathematical statement akin – in the
appropriate state space – to the “Maxwell’s rule of equal areas” in the construction
of the so-called Maxwell line).

5. CONCLUSIONS

Equations (28) and (31) illustrate perfectly the need for distinguishing
between internal and free energies. They emphasize the use of one or the other,
depending on the thermal conditions of the considered process across the wave
front.

Another way to derive these relationships at S has been developed by one of
the authors [7] by introducing the notion of a single scalar quantity, a generating
function or Massieu thermodynamic potential M from which both fS and σS

are consistently derived. For this, we refer the readers to the original work. In
conclusion, we note the recurring appearance of the product term Sθ in both bulk
equations and jump relations, in particular in the canonical expression (2)2 of the
energy balance, in the relationship (12), and similar jump relations (e.g., Eq. (21)),
and the reduced expression of fS,W in the shock wave case (adiabatic conditions).
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Eshelby pinge kasutamine isotermilistel ja
adiabaatilistel tingimustel

Gérard A. Maugin ja Arkadi Berezovski

On rõhutatud erilist osa, mis on suurusel “entroopia korrutatud temperatuuriga”
kanoonilises termomehaanikas kas paljudel või üksikutel pindadel, eriti lööklainel
ja faasiülemineku frondil, aga veel üldisemalt juhul, kui tuleb valida adiabaatilise
või isotermilise käitumise tööhüpoteesi vahel.
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