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Abstract. The notion of configurational force in mechanics and thermomechanics can be readily 
extended to electromagnetic elastic materials. By invariance arguments and through variational 
procedures, the Maxwell equations are transformed into a Lagrangian (or material) form and thus 
consistently coupled with the mechanical balance laws. In this context, the configurational forces 
and momenta depend also on the electromagnetic fields and specifically on the Lagrangian 
electromagnetic potentials. The question then arises as to whether the classical gauge conditions are 
still appropriate to the Lagrangian potentials. Eventually, gauge transformations for these potentials 
are examined for the full set of equations of interest. 
 
Key words: configurational forces, continuum mechanics, electrodynamics, variational calculus. 

 
 

1. INTRODUCTION 
 
The singular behaviour of mechanical and electromagnetic fields can be 

assimilated to possibly time-dependent localized material inhomogeneities. In 
this view, the related thermodynamical potential, such as the free energy, may 
explicitly depend on time, the time evolution of the material response being 
governed by the laws of thermodynamics. However, in most cases these 
phenomena are better understood in the context of configurational mechanics, in 
terms of material forces and material momenta [1–6]. 

In the presence of electromagnetic fields, the problem of identifying forces 
and momenta may arise as a preliminary issue. This identification being 
established, configurational material forces and momenta can be introduced in 
terms of the electromagnetic quantities and specifically of the material 
electromagnetic potentials, which are defined in the reference configuration of 
the body. The Maxwell equations, written in terms of these potentials, are said to 
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be expressed in material or Lagrangian form. The request of invariance of the 
Maxwell equations for possible transformations of the aforementioned potentials 
addresses gauge transformations. These transformations for the Lagrangian 
potentials, though similar in form, radically differ from the classical gauge 
transformations, which are inherent in the electromagnetic fields and equations in 
the actual configuration. The electromagnetic potentials also address gauge 
conditions. These conditions can be reformulated for the Lagrangian potentials as 
a replica of those stated in the classical electromagnetic theory, but, 
unfortunately, the related results seem to be rather unsatisfactory. 

These remarks suggest looking for new conditions or new equations in the 
Lagrangian framework. In this context, configurational forces and momenta may 
fail to be invariant with respect to the material gauge transformations [7,8]. A 
similar situation in which a physical quantity is not invariant with respect to 
gauge transformations of the classical electromagnetic potentials emerges in the 
case of a pointwise charged particle acted on by electromagnetic fields. A 
Lagrangian is associated with the particle from which the canonical momentum 
is derived. This momentum turns out to depend explicitly on the electromagnetic 
vector-potential and is thus gauge-dependent. However, the role of the electro-
magnetic potential in the canonical momentum deserves some further comments. 
In fact, on the basis of this momentum a Hamiltonian can also be associated with 
the particle through a classical Legendre transformation. As is known, the 
Hamiltonian provides the basis for a quantum mechanical description as it 
addresses the Schrödinger equation, the master equation of quantum 
mechanics [9–11]. This equation governs the so-called wave function, a complex-
valued function of the position and time that is associated with the particle. It 
turns out that the presence of the electromagnetic potentials in the Hamiltonian 
and thus in the Schrödinger equation only affects the phase of the solution for the 
wave function. As this phase shift is essentially due to the vector potential, the 
gauge transformation of this potential also only affects the phase of the wave 
function of the particle. From the physical standpoint, the occurrence of such a 
phase shift is of minor relevance. In fact, the norm is physically relevant, as it is a 
candidate for representing the density of the particles in a phenomenological 
theory. As the norm of the wave function does not depend on its phase, it is 
clearly invariant under gauge transformations. Notwithstanding, the afore-
mentioned phase shift due to gauge transformations turns out to be of interest in 
the presence of other particles or in the presence of a crystalline environment 
with which they may interact. In fact, the full set of the coupled equations 
possibly removes the indeterminacy of the potentials. 

From the phenomenological standpoint, the particle may be conceived as an 
inhomogeneity of the elastic crystal. In this case, the equation that governs its 
motion is possibly coupled with the equations of configurational mechanics. 
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2. DYNAMICS  OF  ELECTROMAGNETIC  MATERIALS 
 
The present treatment is based on a classical variational approach. Two 

configurations, the actual and the reference configuration, denoted by V  and ,V  
respectively, are introduced for the body of interest, both embedded in the 
physical Euclidean space 3.E  Here V  and V  are two simply connected open 
sets such that V∈X  and ;∈x V  ( , ),t=x Xχ  ,t ∈ R  represents the motion, F  
the deformation gradient, and d d [ ( , )]t t= ≡v x Xi χ  the velocity. As usual, 
det 0J≡ >F  [12]. A Lagrangian density per unit volume of the reference con-
figuration is introduced in [1–4,7,8,13] 

 

( , , , , ( ), ( ), , ( ), ( ), , ( ), , , ( ), , ),R R R RL φ φ φ= ∇ ∇ ∇ ∇x F v Xi i i i

P P P M M ML A A A    
 (2.1) 

 

where φ  and A  represent the electromagnetic potentials in the Lagrangian  
form, R∇  denotes the gradient operator in ,V  1J −= F PP  and =M  

T ≡F M ( )T + ×F v PM  represent the material polarization and magnetization, 
respectively. Details are found in [1–4,7,8,14]. The related Euler–Lagrange (E–L) 
equations provide the Maxwell equations in the Lagrangian form, the balance 
equation of momentum and additional constitutive-like equations for P  and .M  
A specific Lagrangian was introduced in aforementioned papers, in which the 
gradients of polarization and magnetization were neglected. With reference to 
these equations (although the result easily extends to the case in which the 
polarization and magnetization gradients are present), we can note that the E–L 
equations and all related physical quantities are invariant for the following gauge 
transformations: 

 

* ( ),R f= − ∇A A                                           (2.2) 
 

* ,fφ φ= + i                                               (2.3) 
 

where ( ( , ), )f t tx X  represents an arbitrary scalar function, in fact, the material 
gauge function.  

The momentum and the stress that are related to the aforementioned 
Lagrangian read, respectively, 

 

0 0( ) ,Jρ ε∂ ∂ = + ×v v E BL                                     (2.4) 
 

( ) .TJ −∂ ∂ = −F TFL                                        (2.5) 
 

In Eqs (2.4) and (2.5) 0ρ  denotes the mass density in ;V  E  and B  are the 
electric field and the magnetic induction in the current frame, respectively; 0ε  is 
the dielectric constant of a vacuum; T  is a Cauchy-like stress that explicitly 
reads [1–4] 
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( ) ( ) { [ ( ) ] }TJ W E Bε µ ε µ− − −= ⊗ + ⊗ + ∂ ∂ − + +T E E B B F F B IM ⋅    

( ) ,+ ⊗ − ⊗ + × ⊗P B E B vE M                                                   (2.6) 
 

where 0µ  is the magnetic permeability of a vacuum, W  is the stored energy, I  is 
the identity tensor, and .= + ×E v BE  

From the aforementioned E–L equations the configurational material stress 
and the configurational material momentum density can be derived [8]. These 
read, respectively, 

 
1

02
{ ( ) } ( )TW Wρ= − − × − − ∂ ∂ + ⊗ − ⊗0V V CV I F FP P Mb ⋅ ⋅ ⋅E B D E B  

 

( ) ( ) ( ) ,+ × ⊗ − × ⊗ + × ⊗0 0 0V V VD B B D D B                                   (2.7) 
 

0 ,ρ= + ×Cv Pp B                                           (2.8) 
 

where 1, ;T −≡ ≡ −C F F V F v  ,E  ,B  and D  are the electric field, the magnetic 
and the electric induction, respectively, in the Lagrangian form; 

1
0 ( ).Jε −≡ − ≡ + ×0 C VPD D E B  

All these quantities are evidently unaffected by the transformations (2.2) and 
(2.3). This is not the case if the configurational forces and the related equations 
are introduced as primary equations, independently of the classical balance 
equations.  

 
2.1. Configurational  dynamics  and  inverse  motion 

 
Introduce the inverse motion 1( , )t−=X xχ  and the following Lagrangian 

density per unit volume of the current configuration: 
 

1( ,( , ), , , ( , ), , , ( , ), , , ( , ), , , ( , ), , ),t t t t tφ φ φ −= ∇ ∇ ∇ ∇ X X F xA A A P P P M M ML L    
(2.9) 

 

where ∇  denotes the gradient operator in ;V  ( , ) ( ( , ), )th h t t t≡ ∂ ∂X x  at fixed 
,x  for any function .h  Through a nonstandard variational procedure, it is 

possible to recover the equations of the configurational electrodynamics and the 
Maxwell equations, having assumed that .J L=L  With reference to the specific 
Lagrangian, introduced in papers [1–4,7,8], these equations are now established in 
the current frame of reference and eventually transformed in the referential 
frame. The E–L equations that are related to the Lagrangian (2.9) are invariant 
with respect to the gauge transformations (2.2) and (2.3), whereas, by contrast, 
the configurational material stress and momentum are not. In fact, from this 
nonclassical variational approach these quantities are derived as follows: 

 

( ) ( ) ,R∂ ∂ = + ∇V AL p D                                   (2.10) 
 

1( ) ( )( ) ,T
R RJ − −− ∂ ∂ = + ∇ ∂ ∂∇ + ⊗F F ib A A AL L D                (2.11) 
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where b  and p  are defined by the relationships (2.7) and (2.8), respectively [8]. 
Note that 

 

( ) ( )T
R∇ ≡ ∇FA A  and ( , ) ( ) .t≡ + ∇ viA A A                    (2.12) 

 

The second term on the right-hand side of the expression (2.10) and the second 
and third terms of the expression (2.11) fail to be invariant with respect to the 
gauge transformations (2.2) and (2.3), as does the invariance of the material 
momentum and stress. A failure of gauge invariance may also appear in different 
contexts, which are introduced in the next sections. 

 
 

3. CLASSICAL  GAUGE  CONDITIONS   
AND  GAUGE  TRANSFORMATIONS 

 
The transformations (2.2) and (2.3) formally reproduce the classical gauge 

transformations that are inherent in the electromagnetic potentials in the current 
frame. If ϕ  and a denote these potentials, the classical gauge transformations 
read 

 

* ,g= − ∇a a                                               (3.1) 
 

* ( , ),tgϕ ϕ= −                                             (3.2) 
 

where ( , )g tx  represents the classical gauge function [15–18]. Note that the space 
and time differential operators act on in the current configuration here, contrary 
to the case of section 2, in which the corresponding operators act on in the 
reference configuration. As is known, the Maxwell equations are invariant with 
respect to these transformations. 

It is worth recalling the relationships between ( , )ϕ a  and ( , ),φ A  which are [1] 
 

,T= F aA                                                 (3.3) 
 

.φ ϕ= − v a⋅                                               (3.4) 
 

In order to determine uniquely the electromagnetic potentials, additional 
equations are needed. In the classical electromagnetic theory, these are typically 
given as two alternate conditions, known as the gauge conditions. Specifically, 
they are either the Coulomb (or transverse condition) or the Lorenz-Lorentz 
condition [16,17]. If these are combined with the Maxwell equations in homo-
geneous materials or in a vacuum, the resulting equations are two decoupled 
hyperbolic wave equations for ϕ  and .a  This outcome is remarkable as it 
addresses the notion of retarded potentials and causality. The equivalence 
between the Coulomb and the Lorenz-Lorentz condition is discussed by Brill and 
Goodman [18]. 



 121

A condition that in the Lagrangian context is similar to the classical Lorenz-
Lorentz-like condition is 

 

2Div ( ) 0,c φ−− =iA                                          (3.5) 
 

where c  denotes the light velocity. Unfortunately, this condition leads neither to 
wave equations nor to any interesting results from the physical standpoint. 

To understand better the role of the gauge conditions, the effect of gauge 
transformations (3.1) and (3.2) on a pointwise charged particle will be examined 
closely hereafter. 

 
3.1. Pointwise  particle  in  external  fields 

 
A pointwise charged particle is acted on by the Lorentz force ( ).q ×v B  The 

mechanics of this particle is governed by the Lagrangian [9,11,19] 
 

21
2

( ),mv qλ ϕ= − −v a⋅                                       (3.6) 
 

where ,m  ,q  and v  are the mass, the electric charge, and the velocity of the 
particle, respectively. With reference to this Lagrangian, the canonical 
momentum associated with this particle is  

 

( ) .m qλ∂ ∂ = = +v p v a                                     (3.7) 
 

Note that this momentum is clearly gauge-dependent under the transformations 
(3.1) and (3.2).  

The following Hamiltonian can be associated with the particle, through a 
classical Legendre transformation: 

 

2[1 (2 )] ,H m qϕ= +ap                                      (3.8) 
 

where 
 

.q m= − =ap p a v                                          (3.9) 
 

The quantum mechanical description of the particle in the presence of electro-
magnetic fields is based on the Hamiltonian (3.8).  

The rules and the assumptions for the quantum mechanical representation of 
the pointwise particle are summarized and listed hereafter without entering the 
details. The interested reader is referred to the related literature [9–11,19,20]. 

 
3.2. Quantum  mechanical  description 

 
A complex-valued function ( , ),tψ x  known as the wave function, is associated 

with the particle of interest in the quantum mechanical treatment. The norm of 
the wave function is a candidate for representing the density of a large number of 
pointwise particles in the Euclidean space. A differential operator ( )− ∇�i  is 
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associated with the momentum .p  Here i  denotes the imaginary unit and �  the 
reduced Planck’s constant. The operator introduced above is assumed to act on 
the wave function .ψ  With reference to Eqs (3.8) and (3.9), a differential 
operator H  that also acts on ψ  is associated with ,H  so that 

 

2 2{ ( 2 )[ ( ) ] } .H m q qψ ϕ ψ≡ − ∇ − +a� �i                       (3.10) 
 

The final assumption is that the function ψ  is governed by the Schrödinger 
equation, which reads 

 

( ).H tψ ψ= ∂ ∂�i                                           (3.11) 
 

In many cases of interest, this equation reduces to the so-called stationary 
Schrödinger equation [9–11], which is 

 

2 2{ ( 2 )[ ( ) ] } Є .m q qϕ ψ ψ− ∇ − + =a� �i                      (3.12) 
 

Here Є  represents the possible eigenvalue of the partial differential equa-
tion (3.12) and ψ  the related eigenfunction. In the absence of ,A  Eq. (3.12) 
modifies accordingly, and if ψ  denotes the eigenfunction that is related to the 
unchanged eigenvalue Є,  it is straightforward to show that 

 

exp[( )( )].qψ = a x� ⋅iψ                                   (3.13) 
 

According to this result, the presence of A  turns out to affect only the phase 
of the wave function by shifting it for the amount ( )( ),q a x� ⋅  whereas the norm 
of the wave function remains unaltered as ,ψψ + +=ψψ  with ψ +  and +

ψ  
denoting the complex conjugate of ψ  and ,ψ  respectively. 

 
3.3. Gauge  transformations  in  the  momentum  and  in  the  Hamiltonian 

 
Under the gauge transformations (3.1) and (3.2) the differential operator 

associated with ap  transforms as 
 

* [ ( ) ( ) ].q q g= − ∇ − + ∇ap a� � �i i i                            (3.14) 
 

The operator H  transforms into *H  and Eq. (3.10) transforms accordingly as 
follows: 

 

2 2{ ( 2 )[ ( ) ( ) ] } * Є *,m q q g qϕ ψ ψ− ∇ − + ∇ + =a� � �i i              (3.15) 
 

with *ψ  being the new eigenfunction that is related with the unchanged eingen-
value Є.  

It is worth noting that * exp[( ) ]q gψ ψ= �i  is a solution of Eq. (3.14). The 
proof relies on the following two equalities: 

 

* * exp[( ) ] ,q gψ ψ=a ap p�i                              (3.16) 
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2 2( *) * exp[( ) ]( ) ,q gψ ψ=a ap p�i                             (3.17) 
 

and on the remark that 2( )ap  and 2( *)ap  represent the differential operators on 
the left-hand sides of Eqs (3.12) and (3.15), respectively.  

This result shows that the gauge transformations (3.1) and (3.2) produce in the 
wave function an additional phase shift that is equal to [( ) ].q g�i  Therefore, the 
norm of the wave function is not affected by these gauge transformations [20,21]. 

 
 

4. GAUGE  TRANSFORMATIONS  INDUCED  BY  THE  QUANTUM  
MECHANICAL  DESCRIPTION 

 
The quantum mechanical treatment expounded above addresses the following 

additional transformations for the space- and time-differential operators, 
respectively: 

 

G ( ) ,q∇ = ∇ − a�i                                          (4.1) 
 

G( ) ( ) ( ) .t t q ϕ∂ ∂ = ∂ ∂ + �i                                    (4.2) 
 

These transformations, known as gauge transformations of the first kind, leave 
invariant the Maxwell equations and the norm of the wave function of the 
particle of interest as well. By contrast, they affect the wave phase, as shown in 
section 3.2. 

With reference to the Lagrangian form (2.9) and with reference to the specific 
Lagrangian such as introduced in previous papers [1–4,7,8,14], it is feasible to extend 
the transformations (4.1) and (4.2) to the space- and time-differential operators in 
the reference configuration of a deformable solid and write 

 

G ( ) ,R R q∇ = ∇ − � Ai                                         (4.3) 
 

G(d d ) (d d ) ( ) .t t q φ= + �i                                    (4.4) 
 

With reference to the relationships (2.11), (3.3), and (3.9), the momentum 
operator that is associated with ap  can be written in terms of the Lagrangian 
potentials φ  and A  as follows: 

 

( ) [ ( ) ].T
R R q−= − ∇ −ap F� � Ai i                                (4.5) 

 

Accordingly, the Hamiltonian operator H  is written as 
 

2 1{ ( 2 )[ ( ) ] [ ( ) ] .R RH m q q qφ−= − ∇ − ∇ − +C� � �A A⋅i i               (4.6) 
 

It is worth noting that the operator (4.3) is associated with the quantity 
( ).T

aF p  This quantity, upon which the differential operator (4.6) is based, is a 
configurational quantity like the material momentum. Hence, according to this 
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remark, a particle moving in a deformable solid in the presence of electro-
magnetic fields would interact with the environment through the material 
momentum rather than through the physical momentum. 

It is also worth comparing the operator (4.6) with that on the left-hand side of 
Eq. (3.10) and note the role of a metric tensor played in the expression (4.6) by 

1,−C  the inverse right-Cauchy–Green deformation tensor. 
 
 

5. FINAL  REMARKS 
 
In certain circumstances the indeterminacy of physical quantities due to a 

gauge dependence may address possible coupling with other fields and other 
equations rather than classical gauge conditions. According to the results of 
section 4, in the presence of deformations this coupling has to be through 
material Lagrangian fields and configurational quantities such as the material 
momentum. 

The operators (4.3) and (4.4) play a crucial role in the phenomenological 
description of superconductors [22]. This issue, however, deserves a more 
extensive discussion that is beyond the scope of this paper and will possibly be 
considered in a future work. 
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Konfiguratsioonilised  jõud  dünaamikas  ja  
elektrodünaamikas 

 
Carmine Trimarco 

 
Konfiguratsioonilise jõu mõistet mehaanikas ja termomehaanikas võib lihtsalt 

laiendada elektromagnetilisele elastsele ainele. Invariantsete muutujate ja variat-
sioonmeetodi abil teisendatakse Maxwelli võrrandid Lagrange’i (ehk materiaal-
sele) kujule ja seega seostatakse need mehaanilise tasakaalu seadustega. Selles 
kontekstis sõltuvad konfiguratsioonilised jõud ja momendid ka elektromagnet-
väljast ja nimelt Lagrange’i elektromagnetilisest potentsiaalist. Tõstatub küsimus, 
kas klassikalised standardtingimused on ikka Lagrange’i potentsiaalide korral 
sobivad. Lõpptulemusena on neid potentsiaale uuritud huvipakkuvate võrrandite 
täieliku kogumi jaoks. 

 
 


