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Abstract. A nonlinear elastic material with weakly inhomogeneous properties is considered.
The counter-propagation and interaction of two waves are studied. The perturbative analytical
solution is derived to describe an initial stage of the propagation, interaction, and reflection
of waves. The phenomenon of interaction resonance is captured numerically. Numerical
analysis clarifies the character of wave interaction resonances versus the parameters of a weakly
inhomogeneous material.
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1. INTRODUCTION

Advances in material technology and measurement techniques stimulate the
basic research to describe more precisely the theoretical background by which
material properties may be detected and controlled by ultrasonic nondestructive
techniques [1]. In this paper the counter-propagation of two ultrasonic waves in
a weakly inhomogeneous nonlinear elastic material [2] is studied. An analytical
solution to the wave equation is derived by making use of the perturbation
technique. The phenomenon of interaction resonance of counter-propagating waves
in materials with different weak inhomogeneous properties is cleared up. This
phenomenon may be used in ultrasonic nondestructive testing.
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2. PROBLEM FORMULATION AND SOLUTION PROCEDURE

A specimen with two parallel traction-free surfaces is considered. Initially the
specimen is in a natural stress-free state. At the instant t = 0 the wave propagation
process is generated on the surfaces X = 0 and X = L (Fig. 1), where X and
Y are Lagrangian rectangular coordinates. Waves propagate into the depth of the
specimen, meet each other, interact, propagate towards the opposite surfaces, reflect
back, and return to the surfaces where they were generated. The wave motion is
studied up to this instant.

The wave propagation is treated by the equation of motion [3]
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under the initial and boundary conditions
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where U is the particle displacement, t is the time, H(t) is the Heaviside step
function, and constants ε a0 and ε aL determine the initial amplitudes of waves
(ε << 1). The functions ϕ(t) and ψ(t) are arbitrary smooth functions that define
the initial wave profiles.

The variable coefficients kj(X), j = 1, ..., 4 in Eq. (1) are functions of the
material density ρ(X), the second-order elastic coefficients λ(X) and µ(X) and
the third-order elastic coefficients ν1(X), ν2(X), and ν3(X) [3]. In the one-
dimensional case elastic coefficients are grouped as the linear elastic coefficient

X
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0

Fig. 1. Excitation of counter-propagating waves.
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α(X) = λ(X) + 2µ(X) and the nonlinear elastic coefficient β(X) = 2 [ν1(X)
+ν2(X) + ν3(X)] [4].

It is assumed that the material inhomogeneity is small with respect to the base
value and may be presented in the form

γ(X) = γ(1) + ε γ(2)(X), (γ = ρ, α, β), (0 < ε ¿ 1),

γ(2)(X) = ζ1ξX + ζ2ξX
2 + ζ3ξX

3, (ξ = ρ, α, β),
(3)

where the weak inhomogeneity is described independently for ρ(X), α(X), and
β(X) (γ(X) = ρ(X), α(X), β(X)) by the polynomial coefficients ζiξ (i =
1, 2, 3, ξ = ρ, α, β).

The solution to equation of motion (1) is sought in the form of the series

U(X, t) =
∞∑

n=1

εn U (n)(X, t) , 0 < ε ¿ 1. (4)

Following the perturbation procedure, Eq. (4) and Eq. (3) are introduced into the
equation of motion (1). This yields a set of equations to determine the terms in
Eq. (4). The solution is derived up to the third term [4].

3. HARMONIC WAVES

In this study an analytical explicit solution of the counter-propagation and
interaction of waves is derived for the case of harmonic waves

ϕ(t) = ψ(t) = sin(ωt), (5)

with an angular frequency ω.
The numerical values of material properties used in the following illustrations

correspond to those of duralumin. The density ρ(1) = 3000 kg/m3, the linear
coefficient of elasticity α(1) = 100 GPa, and the linear wave velocity c =
(α(1)/ρ

(1)
0 )1/2 ≈ 5773.5 m/s. The thickness of the sample L = 0.1 m. The excited

waves are characterized by the angular frequency ω = 1.378488 × 106 rad/s, the
amplitudes a0 = aL = −c and ε = 10−4.

The perturbation procedure determines the first term in Eq. (4) as a solution
to the linear homogeneous wave equation with constant coefficients. Initial and
boundary conditions Eq. (2) and the initial waveform Eq. (5) transform this solution
to the expression

U (1)(X, t) = a0H(ξ)
∫ ξ

0
sin(τ)dτ + aLH(η)

∫ η

0
sin(τ)dτ

− a0H(θ)
∫ θ

0
sin(τ)dτ − aLH(ζ)

∫ ζ

0
sin(τ)dτ,

ξ = τ − X

c
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c
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c
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c
,

(6)
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where the first and the second term describe the propagation of the waves generated
on the boundaries X = 0 and X = L and the third and the fourth term determine
their reflections from the opposite boundary and further propagation, respectively.
The oscillations on the boundaries are depicted in Fig. 2. The notation U,X(X, t)
is used for ∂U(X,t)

∂X in Figs 2 and 3. The amplitudes of boundary oscillations in the
interaction interval 1 ≤ t c/L < 2 are frequency dependent. It turns out that if the
angular frequency satisfies the condition ω = 2π nc/L and n is an integer, then
the oscillation amplitude in the interaction interval is the highest – three times the
amplitude in the propagation interval 0 ≤ t c/L < 1 (lines for n = 3 and n = 4 in
Fig. 2). If n equals the integer and a half, there is no amplification of oscillations in
the interaction interval (line for n = 3.5 in Fig. 2). For all other arbitrary values of
n, the amplification is between these extremal values (line for n = 3.80 in Fig. 2).

The second and the subsequent terms in Eq. (4) are solutions to inhomogeneous
wave equations with the known r.h.s. under the initial and boundary conditions
equal to zero. The second term corrects the linear solution Eq. (6) and takes the

Fig. 2. Influence of the excitation frequency on the oscillations on the boundaries (s = 0, L)
of a linear homogeneous material.

Fig. 3. Influence of nonlinearity and inhomogeneity on the wave interaction process at X = 0
(solid line) and X = L (dashed line).
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nonlinear effects of wave propagation (second harmonic) and the effects of the
wave–wave and wave–material interaction into account. The example of these
corrections for the weakly inhomogeneous material is illustrated in Fig. 3, where
the notation εU

(2)
,X (X, t) ≡ ε2 U

(2)
,X (X, t)/|ε| is used. The subsequent terms in

Eq. (4) describe the generation of higher harmonics and the higher-order effects
of the interaction. In this paper the wave interaction is described by the first three
terms in Eq. (4).

4. INTERACTION RESONANCE AND MATERIAL
CHARACTERIZATION

It is more convenient to study the influence of material properties on wave
interaction by replacing the polynomial description of material properties, Eq. (3),
by the expression

γ(X) = γ(1) [ 1 + δiξ(X) ] , (7)

where δiξ(X) = ε ζiξX
i/ γ(1), ( γ, ξ = ρ, α, β) and i = 1 corresponds to linear,

i = 2 to quadratic, and i = 3 to cubic variation of material properties.
The counter-propagation of two harmonic waves in the material is studied by

20 different excitation amplitudes [5] from the interval 0.35c < aL < 1.3c by a0 =
−aL. First, a homogeneous linear elastic material is considered. The maximum
value (resonance value Alj) of the first local maximum of the boundary oscillation
amplitude on the boundary X = 0 in the interaction interval 1 ≤ t c/L < 2 (see
Fig. 2) is determined as a function of the excitation frequency that was chosen close
to the value ω = 2 π n c/L, n = 4. The frequency ωl (Fig. 4), which corresponds
to the resonance value Alj , is denominated as a resonance frequency for the linear
homogeneous material.

After that, a similar procedure is applied to the whole solution Eq. (4), i.e.,
the interaction of waves in a weakly inhomogeneous material is studied. The
results are plotted in Fig. 4, where ω denotes the computed resonance frequency
and A the corresponding amplitude for a nonlinear inhomogeneous material. The
dots in Fig. 4, which form cascades, are the resonance values for the different
initial amplitudes. The case δiξ = 0, (i = 1, 2, 3 , ξ = ρ, α, β) stands for the non-
linear homogeneous material. The case 102 δ1α = 1.0 represents the inhomo-
geneous material whose linear coefficient of elasticity α(X) changes linearly with
a maximum deviation from the basic value α(1), equal to one per cent. Similarly,
the case 102 δ1α = −1.0 describes a linear change in the elastic coefficient α(X)
but with a negative inclination. In the last two cases the other material properties
are constant. The material with linear inhomogeneity only in density is described
in the same way by terms 102 δ1ρ = 1.0 and 102 δ1ρ = −1.0. The quadratic
inhomogeneity in material properties is determined by the term δ2ξ(X), ξ =
ρ, α, β, and the cubic one by the term δ3ξ(X), ξ = ρ, α, β. It turns out that the
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Fig. 4. Resonance cascades in an inhomogeneous material at X = 0.

influence of inhomogeneity in the nonlinear elastic coefficient β(X) on the wave
motion is a higher-order small effect, compared to the influence of inhomogeneity
in density ρ(X) or linear elastic coefficient α(X).

The analysed more complex cases of material inhomogeneity are presented
in Table 1. Here, the simultaneous variation of the material density and linear
elasticity are considered. The variation of the density is assumed to be linear,
described by the term δ1ρ, and the variation of the linear elasticity is described
as a sum of the linear variation δ1α, quadratic variation δ2α, and the cubic variation
δ3α. The results of numerical simulations for case 1 in Table 1 are plotted in Fig. 5
for two different materials: duralumin and aluminium AA 7475 [6].

The shift of the resonance cascade for case 1 with respect to the resonance
cascade for the homogeneous case may be roughly determined as a vectorial sum
of vectors that point to the cascades for one-parametric cases of inhomogeneity, i.e.
the superposition of resonance shifts is identifiable. In Fig. 5 the simulation results
for two materials with different properties are presented. It is noteworthy that the
distribution of the resonance points in the cascade depends on the basic values of
material properties and the shifts of the cascades depend only on the values of the
parameters of inhomogeneity.

Table 1. Values of parameters for more complex cases of inhomogeneity

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

102δ1α 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
102δ2α 1.0 1.0 1.0 1.0 –1.0 –1.0 –1.0 –1.0
102δ3α 1.0 1.0 –1.0 –1.0 1.0 1.0 –1.0 –1.0
102δ1ρ 1.0 –1.0 1.0 –1.0 1.0 –1.0 1.0 –1.0
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Fig. 5. Superposition of shifts of resonance points for duralumin (crosses) and aluminium
AA 7475 (circles). Case 1 in Table 1.

5. CONCLUSIONS

This paper may be regarded as a development of the ideas presented in [4].
Nonlinear interaction of harmonic counter-propagating waves in homogeneous
and weakly inhomogeneous nonlinear elastic materials is studied in detail. The
nonlinear effects of the wave–wave and wave–material interaction depend on wave
excitation parameters and material properties. The frequency scan leads to the
resonance nature of these dependencies. The analysis of the cascades of resonance
points enables us to distinguish an ideally homogeneous material from those with
small deviations of properties. This may be of interest by elaboration of new
ultrasonic nondestructive testing techniques.
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Lainete interaktsiooni resonants mittehomogeensetes
materjalides

Andres Braunbrück ja Arvi Ravasoo

Teoreetiliselt on uuritud pikilainete vastassuunalist levi ja interaktsiooni mitte-
lineaarsete ning mittehomogeensete omadustega elastses materjalis. Häiritus-
meetodi abil on tuletatud analüütiline lahend materjali paralleelsetelt vastas-
pindadelt tekitatud lainete levi kirjeldamiseks. Erilist tähelepanu on pööratud
võnkeprotsessidele materjali äärepindadel, kus esinevaid resonantsnähtusi on
analüüsitud numbriliselt. Analüüsi tulemused selgitavad resonantsnähtuste seost
materjali mittehomogeensete omadustega.
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