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Abstract. Plane Cosserat solids are introduced. It is shown that only one parameter is needed
to describe intrinsic rotation. The field equations are simple enough to study the propagation
of nonlinear waves and can be reduced to some particular form that admits different nonlinear
waves, including solitons and cnoidal waves. We took into account both the matrix–grains
and grain–grain interactions, nonlinearity, dispersion, and dissipation. Further examples can
be provided of different kinds of analytical approaches, like asymptotical analysis, reduction
to the Weierstrass equation, hierarchy of leading equations and waves. Solitary wave solutions
and periodic bounded solutions are explicitly obtained.
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1. INTRODUCTION

The theory of continua with microstructures (see, e.g., [1,2]) can be used to
model the behaviour of real materials such as granular materials, polycrystalline
solids, ceramic composites, and materials with microdefects. One of the main
features of the theory is the possibility of taking into account intrinsic space
scales, namely, the size of grains, distance between microcracks, etc. Nonlinearity
and dispersion cannot be avoided as phenomenological effects and mathematical
features intrinsic to such phenomena. To describe granular materials, we must also
introduce dissipation, which is mainly due to interaction between neighbouring
grains.

The model of vector microstructures ([3−5]) seems to be useful for obtaining
general field equations applicable to such materials. For simplicity, we restrict our
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attention to plane granular media. The natural model is the Cosserat theory, where
the vector microstructure is described by a triad of orthonormal vectors. In field
equations conservative stresses appear, i.e. stresses related to a generalized strain
energy, and dissipative stresses, which are assumed to be linear in strain velocities.

Wave propagation can be studied by means of the well-known perturbation
technique and slaving principle (see [6]). This approach allows us to reduce the
set of general field equations to one equation in the ruling variable; hence we may
estimate the possibility of propagation of solitary waves, depending on the balance
of nonlinearity, dispersion, and dissipation. As a rule, dispersion is required for the
existence of the bell-shaped solitary waves in an elastic microstructured medium,
while dissipation is expected to be responsible for a saturation, which prevents
unbounded growth of the bell-shaped solitary wave.

Our aim is to solve analytically the two-dimensional in space nonlinear wave
propagation problem, using the simplest possible but informative description of
internal dissipative features. Anaytical results are of considerable interest also as
a tentative fault detection test for any numerical simulation in the 1+2D problem.
The numerical solution in a 1+1D problem considered in [7] was based on the
pseudospectral method supported by the analytical solution for the linear case to
show how dissipative effects on various scales affect the harmonic wave.

We show how the influence of dissipation in the 1+2D problem in comparison
with the simple case, where only nonlinearity and dispersion are taken into account,
appears through a coefficient in the final solution, having a general form in terms of
the Weierstrass elliptic function. It provides periodical and solitary wave solutions
as appropriate limits. Moreover, it enters essentially the soliton solution to the
1+2D problem, and it seems feasible to claim that it can affect the amplitude
evolution. Physical importance of the results obtained is in getting a detectable
signal – the soliton, which is elusive in experiments without preliminary analytical
solution (see [8,9]).

2. THE FIELD EQUATIONS

It is well known (see [3,4,10−12]) that the Cosserat solids can be described as
nonlinear elastic solids C with a vectorial microstructure constrained to be a rigid
triad dα = dα(Xβ, t), α, β = 1, 2, 3, where Xβ are material coordinates in a
reference configuration C∗, such that dα · dβ = δαβ, ∀ t.

In the plane case we have α, β = 1, 2 and we can express the directors in terms
of a rotation angle θ only:

d1 = d = cos θe1 + sin θe2, d2 = ν = − sin θe1 + cos θe2, (1)

where {ei}, i = 1, 2 is any orthonormal spatial basis, 0 ≤ θ ≤ 2π. We have

ḋ = θ̇ν, d,h = θ,hν, (2)
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and writing r = xh(Xh, t)eh, we obtain for kinetic and strain energy densities

T =
1
2

(
ρδij ẋ

iẋj + Iθ̇2
)

and W = W
(
xh

,k, θ, θ,h;Xh
)

. (3)

If we avoid body forces, the dissipative field equations yield ( [13]):




ρẍh =

(
∂W

∂xh
,i

+ σ̂h

)

,i

,

Iθ̈ =
(

∂W

∂θ,i
+ η̂i

)

,i

−
(

∂W

∂θ
+ τ̂

)
,

(4)

where the terms σ̂h, η̂i, τ̂ represent the dissipation.

3. THE SIMPLER DISSIPATIVE CASE

We study the simplest model, where the dissipation is due to the rotation θ̇ only,
through the term τ̂ = −F (θx + θy)t.

For the sake of simplicity, we shall use the notation: X1 = x, X2 = y, x1 = u,
x2 = v. Hence we consider the vector r = r(x, y, t) = u(x, y, t)e1 + v(x, y, t)e2

for the macrostructure and, for the microstructure, the function θ = θ(x, y, t) that
represents the angle of rotation of the particle with respect to the fixed basis. In the
following the subscripts x, y, t will denote differentiations.

The kinetic energy density reads

T =
1
2

[
ρ

(
u2

t + v2
t

)
+ Iθ2

t

]
.

The strain energy density is chosen in the form

W =
1
2
α

(
u2

x + v2
x

)
+

1
2
β

(
u2

y + v2
y

)
+

1
6
γ(u3

x + u3
y + v3

x + v3
y)

+
1
2
γ(u2

xvx + u2
yvy + v2

xux + v2
yuy)−Aθ (ux + uy + vx + vy)

+
1
2
Bθ2 +

1
2
C

(
θ2
x + θ2

y

)
+

1
3
D

(
θ3
x + θ3

y

)
.

Since we are mainly interested in the estimation of θ, we introduce a new
variable U = u + v. The field equations can be written as follows:
{

ρUtt = αUxx + βUyy − 2A(θx + θy) + γ
[
(U2

x)x + (U2
y )y

]
,

Iθtt = C(θxx + θyy) + D
[
(θ2

x)x + (θ2
y)y

]
+ A(Ux + Uy)−Bθ − F (θx+ θy)t.

(5)
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Consider the dimensionless form of system (5), and apply the slaving principle (for
all details see [13]). In addition to dimensionless quantity θ, for further analysis the
dimensionless variables are introduced:

w =
U

w0
, X =

x

L
, Y =

y

L
, T =

c2
0

L
t,

where c2
0, w0, L are physically meaningful constants (velocity, intensity, and

wavelength of the initial excitation). We also need a scale for the microstructure l.
Then two dimensionless parameters can be introduced: δ ∼ (

l
L

)2
characterizing

the relation between the microstructure and the wavelength and ε ∼ (
w0
L

)
account-

ing for elastic strain, where δ is the relevant characteristic length.
Following [14], we suppose I = ρl2I∗, C = l2C∗, D = l2D∗, F = l2F ∗,

where I∗ is dimensionless and C∗ and D∗ have the dimension of the stress. We
consider the expansion in terms of the characteristic length δ: θ = θ0+δθ1+... and
we impose the coefficients of powers of δ to be equal. Following the approximation
for θ in terms of w and derivatives, we get

θ ' εA

B
(wX + wY ) +

δεA

B2

[
C∗(wXXX + wXXY + wXY Y + wY Y Y )

−ρc4
0I
∗(wXTT + wY TT )− c4

0F
∗
[

(wX + wY )XT + (wX + wY )Y T )
]]

.

Finally, we obtain the governing equation for w, i.e., for a nondimensional U =
u + v:

wTT =
1

ρc4
0

(αwXX + βwY Y )− 2A2

ρc4
0B

(wXX + 2wXY + wY Y )

− 2δA2C∗

ρc4
0B

2
(wXXXX + 2wXXXY + 2wXXY Y + 2wXY Y Y + wY Y Y Y )

+
2δA2

B2
[I∗(wXX + 2wXY + wY Y )TT + c0F

∗(wXXX + 3wXXY

+3wXY Y + wY Y Y )T ] + εγ
[(

w2
X

)
X

+
(
w2

Y

)
Y

]
.

Introducing the new variable z = X + kY − cT , we consider the 4th-order ODE
for function w(Z):

α̃w′′ + β̃(w′2)′ + γ̃w
′′′′

= 0, (6)

where we introduce the following coefficients α̃, β̃, γ̃:

α̃ =
B(α + βk2)− 2A2(1 + k)2 − c2ρc4

0B

ρc4
0B

, β̃ = εγ(1 + k3),

γ̃ =
2δA2[I∗c2ρc4

0(1 + k)2 − C∗(1 + 2k + 2k2 + 2k3 + k4)− cρc5
0F

∗(1 + k)3]
ρc4

0B
2

.

78



By setting w′ = y, where y = y(z), integrating twice Eq. (6) and rescaling the
coefficients, we get the final equation:

(y′)2 + ay2 + by3 + dy + e = 0, (7)

which is the Weierstrass equation, having a general solution in terms of y =
A℘ + B, where ℘ = ℘(z + z0; g2; g3). We define y = A℘ + B, → y′ = A℘′;
since ℘′2 = (4℘3 − g2℘− g3), and have (y′)2 = A2(4℘3 − g2℘− g3).

Replacing them into Eq. (7), we obtain

A2(4℘3 − g2℘− g3) + a(A2℘2 + B2 + 2AB℘)

+b(A3℘3 + B3 + 3A2B℘2 + 3AB2℘) + d(A℘ + B) + e = 0.

The coefficients A, B, g2, g3 are determined by making independently the
coefficients of each order of ℘ and ℘′ equal to zero:

A = −4
b
, B = − a

3b
,

g2 = − b

4

[
−a2

3b
+ d

]
, g3 =

b2

16

(
e− ad

3b
+

2a3

27b2

)
.

Then
y = −4

b
℘(z + z0; g2; g3)− a

3b
, (8)

where g2 and g3 are defined above. Eventually we have

y = −6γ̃

β̃
℘(z + z0; g2; g3) +

δ̃ + 6β̃γ̃

6β̃γ̃
. (9)

The last step of this approach consists in the evaluation of the integral:

w =
∫

y dz = A

∫
℘(z + z0)dz + Bz = −4

b

∫
℘(z + z0)dz − a

3b
z. (10)

We consider, again, the expression (9), which is general, discontinuous, and
semibounded from below or above. Solutions of this kind can be useful for
tentative validation tests during numerical simulations. Of main physical interest
are bounded continuous solutions; we obtain them as appropriate limits of (9) after
some nontrivial algebra. Following [15], we introduce
(i) 2w and 2w′ as primitive periods of ℘,
(ii) the discriminant ∆ = g3

2 − 27g2
3 ,

(iii) the roots ei = ℘(wi), i = 1, 2, 3 of the equation 4e3 − g2e − g3 = 0,
where w1 = w, w2 = w + w′, w3 = w′.
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Reduction of the doubly periodic Weierstrass function ℘ to a set of single
periodic Jacobian elliptic functions is based on the following relationship between
℘ and cn, sn with modulus M :

sn2(z
√

e1 − e3; M) =
e1 − e3

℘(z)− e3
; cn2(z

√
e1 − e3; M) =

℘(z)− e1

℘(z)− e3
;

M =
√

e2 − e3

e1 − e3
.

Moreover, (cf. [16]), if e1, e2, e3 are any three numbers whose sum is zero, and
if we write

y = e3 +
e1 − e3

sn2(z
√

e1 − e3; M)
,

we obtain the following relation between the Weierstrass function and the Jacobian
elliptic function: ℘(z; g2; g3) = e3 + (e1 − e3)ns2(z

√
e1 − e3)|M). It is well

known that the behaviour of ℘ depends on the sign and value of ∆, which allows
us to extract two cases of main interest.

3.1. Two-dimensional solitary wave solution

In the case of ∆ = 0 one of the periods is infinite: w = ∞ or w′ = i∞ (the
trivial case w = −iw′ = ∞ will be excluded). The first case w = ∞ corresponds
to e1 = e2 6= e3. Since e1 + e2 + e3 = 0, introducing the condition e1 = e2 ≡ E,
we have:

e3 = −2E, g2 = 12E2, g3 − 8E3, w′ = iπ/
√

12E.

Therefore the equation y = −4
b
℘(z + z0; g2; g3)− a

3b
yields

y(z) = − a

3b
+ e3

(
−4

b

)
− 4

b
(e1 − e3)ns2(z

√
e1 − e3|M)

= − a

3b
+

8E

b
− 12E

b
sn−2(z

√
3E|M).

In our case M = 1 and the limiting value sn(z, 1) = tanh z. Then we obtain the
exact 1+2D solitary wave solution y(z) to the original problem (9):

y(z) = − a

3b
+

8E

b
− 12E

b
tanh−2(

√
3E(z + c0)). (11)

Integrating (10), where y(z) is given by (11), we obtain finally

w =
(
− a

3b
+

8E

b

)
z +

√
48E
b

coth(
√

3E(z + c0)).
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The value w′ = ∞ corresponds to e1 6= e2 = e3 and does not lead to bounded
solutions (however, it very often occurs in numerical simulation).

In order to get the explicit expression for θ, we recall that

θ =
εA

B
(1 + k)w′

+
δεA

B2

{[
C∗(1+k+k2+k3)−ρc4

0I
∗c2(1+k)−c0cF

∗(1+k)2
]
w′′′

}
.

For simplicity we set

c1 =
εA

B
(1 + k),

c2 =
δεA

B2

[
C∗(1 + k + k2 + k3)− ρc4

0I
∗c2(1 + k)−c0cF

∗(1+k)2
]
,

and obtain θ = c1W
′ + c2W

′′′, namely:

θ = c1

[
− a

3b
+

8E

b
− 18

b
coth2(

√
3Ez)

]

−48E2c2

b
csch2(

√
3Ez)

[
csch2(

√
3Ez) + coth2(

√
3Ez)

]
.

3.2. Periodic bounded solutions in the case ∆ > 0

In this case there is a pair of primitive periods 2w and 2w′ such that w is a
real and w′ a pure imaginary semiperiod of the ℘ function. Assuming ∆ > 0, all
roots ei, i = 1, 2, 3 are real and different, e1 > e2 > e3, e1 > 0, e3 < 0, from
y =

√
−4/b ℘(z + z0; g2; g3) − a

3b
we obtain the bounded periodical 1+2D

cnoidal wave solution:

y(z) = − a

3b
+

4
b
℘(z; g2; g3)

= − a

3b
− 4

b
e2 + (e3 − e2)

(
−4

b

)
cn2

(√
e1 − e3z|M

)
.

No bounded solutions p(z) were found from (8) when ∆ < 0.

4. CONCLUSIONS

We aimed to show how the influence of dissipation in the nonlinear two-
dimensional problem may be encapsulated in a compact form of the coefficient
in the final ODE. From that equation we found a new general solution in terms
of the Weierstrass elliptic function. It provides many periodical and solitary wave
solutions as appropriate limits. The approach used does not require any reduction
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to evolutionary equation like the KP equation, which is widely used but restrictive
in both derivation and solution of a two-dimensional nonlinear wave problem.
Moreover, our approach yields an essentially new soliton solution to the 1+2D
problem. Thus it seems feasible to claim that the importance of our results in
physics lies in the prediction of a detectable signal – the soliton, which is elusive in
experiments without preliminary analytical solution.
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Mittelineaarsed lained dissipatiivsetes
mikrostruktuursetes 2-dimensionaalsetes tahkistes

Alessia Casasso, Franco Pastrone ja Alexander M. Samsonov

On uuritud lainelevi granuleeritud keskkonnas. On kasutatud 2-dimensio-
naalset Cosserat’ mudelit, kus on arvesse võetud graanulitevaheline vastasmõju
ja keskkonna mittelineaarsed, dispersiivsed ning dissipatiivsed efektid. Saadud
mudelvõrrand on kasutatav mittelineaarse lainelevi ülesannete lahendamiseks ja
sellel on üldlahend, mis on esitatav Weierstrassi elliptiliste funktsioonide kaudu.
Viimases sisaldub piirjuhtudel mitmeid perioodilisi, üksiklainelisi ja solitonilisi
lahendeid.
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