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Abstract. The Horoz pluton includes granitic and granodioritic rocks, with widespread mafic microgranular enclaves (MMEs). 
Petrochemically, the rocks of the pluton show calc-alkaline to shoshonitic and metaluminous to slightly peraluminous composition. 
The rocks also exhibit an enrichment in large ion lithophile elements, e.g. Rb, K, and depletions of high field strength elements 
such as Y, Lu, and Mg#, Ni, with a slightly concave-upward rare earth element pattern. Both granitic and granodioritic rocks 
exhibit geochemical characteristics of tonalite, trondhjemite and granodiorite assemblages, possibly developed by the partial 
melting of a thickened lower crust. The granitoids have high concentrations of Na2O (2.6–4.5 wt%), Sr (347–599 ppm), 
intermediate-high (La/Yb)N (8.2–18.1, mostly >11 ), Al2O3 (13.2–16.9 wt%, average 15.3 wt%), low MgO (0.2–1.4 wt%, average 
0.84 wt%) and Co (0.7–10.3 ppm). The MMEs include higher Na2O (4.5–5.5 wt%), Sr (389–1149 ppm), Al2O3 (16.9–19.2 wt%, 
average 17.8 wt%), MgO (1.4–4.4 wt%, average 2.75 wt%) and Co (6.2–18.7 ppm) contents in comparison with that of their 
hosts. There is a lack of negative Eu anomalies, except a few samples. Both host rocks and MMEs have a low initial 87Sr/86Sr ratio 
(respectively 0.7046–0.7051 and 0.7047–0.7058), low Nd value (–1.8 to –0.2 and –0.6 to 0.7 at 50 Ma) and highly radiogenic 
208Pb/204Pb ratios (39.43–39.47 and 39.39–39.54).  

Whole-rock chemistry and isotopic data suggest that parent magmas of both MMEs and their hosts have derived from melts of 
the mixing between the lithospheric mantle and crustal end members, than fractional crystallization processes in crustal levels. 
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INTRODUCTION 
 
Mafic microgranular enclaves (MMEs) are common  
in metaluminous to peraluminous granitoid plutons 
(Cantagrel et al. 1984; Bacon 1986; Didier & Barbarin 
1991), and are also abundant in most of the Alpine 
granitoids of Turkey (e.g. Kocak 1993, 2006, 2008; 
Çevikbaş et al. 1995; Kadioglu & Güleç 1996; Arslan & 
Aslan 2006; Aydogan et al. 2008; Kaygusuz & 
Aydınçakır 2009; Kocak et al. 2011). They contain mafic 
mineral assemblages, are relatively fine-grained and 
have general ellipsoidal shape with unique micro-
structures commonly interpreted as being igneous as 
reported in many petrological papers (e.g. Didier 1973; 
Vernon 1984, 1990; Frost & Mahood 1987; Bédard 1990; 
Dodge & Kistler 1990; Srogi & Lutz 1990; Poli & 
Tommasini 1991; Barbarin & Didier 1992; Silva et al. 
2000; Waight et al. 2001; Barbarin 2005).  

Mafic microgranular enclaves provide significant 
information on the nature of source rocks, the genesis of 
granitic magma (Pin et al. 1990; Didier & Barbarin 
1991; Barbarin & Didier 1992; Anderson et al. 1998; 

Waight et al. 2001), the coexistence of two contrasting 
magma types (Dorais et al. 1990; Vernon 1990), the 
rheology of host magmas and the tectonic environments 
of granitoid rocks, as well as on the interaction between 
the continental crust and the mantle (Didier et al. 1982). 
Therefore, their origin is of essential significance in 
interpreting the history of plutons. The Horoz pluton 
(HP) is a typical example of bimodal magmatism on the 
northern margin of the Tauride belt. We present detailed 
whole-rock chemical and Sr–Nd–Pb isotopic data of the 
MMEs and host granitoids from the HP, and use these 
data to constrain in granitic plutonism.   

 
 

GEOLOGICAL  SETTING 
 
Turkey is an essential east–west trending constituent  
of the Alpine–Himalayan orogenic system and contains 
several continental and oceanic fragments assembled due 
to the closure of different Tethyan oceanic basins during 
the Late Cretaceous–Early Tertiary period (Fig. 1a). 
One of these basins in southern Turkey, namely the 

© 2016 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution
4.0 International Licence (http://creativecommons.org/licenses/by/4.0). 



K. Kocak  and V. Zedef: Interaction of the lithospheric mantle and crustal melts  

 139

Inner Tauride Ocean (Gorur et al. 1984; Dilek et al. 1999; 
Ozer et al. 2004), was formed between the Central 
Anatolian Crystalline Complex (CACC) and the Tauride 
carbonate platform. The CACC is the largest metamorphic 
block exposed in Turkey and consists of Upper Palaeo-
zoic (Kocak 1993; Kocak & Leake 1994) interlayered 
metacarbonate and metapelitic rocks. The ocean was 
then consumed as a result of north-dipping subduction 
and closed during the latest Cretaceous to early Cenozoic 
times (Parlak et al. 2013a), as evidenced by the existence 
of discontinuous exposures of the Cenomanian–Turonian 
suprasubduction zone ophiolites (i.e. Alihoca, Aladag) 
and mélanges by latest Cretaceous time (Clark & 

Robertson 2002) along the Inner-Tauride Suture Zone 
(Fig. 1a, b). Though the ophiolitic exposures along the 
suture zone are covered by the Ulukisla Basin strata, the 
existence of high positive magnetic anomalies corres-
ponding to the Inner-Tauride Suture Zone (Kaynak & 
Akçakaya 2006) also supports the development of the 
Inner Tauride Ocean and associated oceanic lithosphere 
through the late Mesozoic and thus the derivation of the 
Tauride ophiolites from this oceanic root. The collision 
of Tauride and CACC continental blocks during the 
Palaeocene led to the southward transport of the already-
emplaced ophiolites and mélanges and flysch formation 
together with folding.   

 

 
 

Fig. 1. Generalized geological sketch map of the main lithologic units of the Central Anatolian Crystalline Complex 
(after Bingol 1974). 
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The NE–SW trending HP is situated in the eastern 
part of the Bolkar Mountains as a part of the Tauride 
Platform (Fig. 1b). The pluton formed nearby the Inner-
Tauride Suture Zone and intruded into the Bolkar 
Mountain units, which include variably metamorphosed, 
Upper Permian–Upper Triassic platform carbonates 
with siliciclastic intercalations. The HP contains granite 
and granodiorite members (Fig. 2) and has sharp and 
discordant contacts, with hornfels formation, which 
suggests a shallow-crustal emplacement depth. The HP 
is intruded by two types of mafic dykes with sharp 
contacts: (i) the blackish-coloured dyke closely associated 
with granitoids and dismembered in places, forming 
smaller angular enclaves and (ii) the greenish-coloured 
dyke forming relatively alteration-resistant, higher topo-
graphic levels in the northwestern part of the study area. 
It contains also some small felsic enclaves and has sharp 
contacts with their granitoid host rocks, representing 
possibly the youngest magmatic unit in the pluton. The 
HP was intruded into the Upper Cretaceous Alihoca 
ophiolites, which include ultrabasic rocks, volcano-
sedimentary rocks, volcanic rocks, diabases, spilite and 
glaucophane-bearing schists. In comparison with the 
felsic granite, the granodiorite is relatively coarse-grained, 

less fractured/altered and has more enclaves. Based on 
the existence of pebbles of the Horoz granitoid (Alan  
et al. 2007) in the Middle Eocene clastic rocks of the 
Ulukisla–Çamardı basin, the age of the Horoz granitoid 
is constrained as the Palaeocene–early Eocene. Geo-
chronological studies suggest a crystallization age 
between 49 and 56 Ma by U–Pb zircon dating 
(Kadioglu & Dilek 2010; Kuscu et al. 2010; Parlak et al. 
2013b) and 40Ar–39Ar dating (Kuscu et al. 2010). The 
HP was unroofed due to crustal uplift and erosion 
throughout the Palaeogene by 23.6 ± 1.2 Ma (Dilek et 
al. 1997). However, a recent study (Whitney et al. 2015) 
suggests that the Horoz granitoid records two main 
pulses of cooling: (1) an initial stage at ~38–31 Ma, 
possibly linked with a regional event that is recorded in 
other crystalline rocks in Central Anatolia and (2) a later 
stage that may correspond to at least ~2 km of erosion-
related exhumation associated with late Miocene uplift 
of the southern margin of the Central Anatolian Plateau. 

Rounded MMEs in the pluton have usually fine-
grained margins and different sizes, from several 
centimetres up to metres. The geometry of the enclave–
host contact varies from sharp/crenulate to diffuse/veined. 
The contact also varies from lobate to cuspate (Fig. 3a, b).  

 

 
 

Fig. 2. Geological map of the Horoz area (modified from Çevikbaş et al. 1995 and Kadioglu & Dilek 2010). 1, Talus
(Quaternary); 2, terrace (Plio-Quaternary); 3, Geyikpınarı conglomerate member (Palaeocene); 4, Yataktaş quartz-porphyry
(U. Cretaceous–Palaeocene); 5, granite (Eocene); 6, granodiorite (Eocene); 7, Kalkankaya formation (U. Maestrichtian–L. Palaeocene);
8, Alihoca ophiolitic complex (Cretaceous); 9, Madenköy ophiolitic mélange (Cretaceous); 10, Bolkardağı marble (Permian);
11, anticline; 12, wrench fault; 13, thrust fault. 
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The MMEs in the dioritic dykes may include a ‘double 
enclave’ structure where they partially or fully contain 
smaller, finer-grained, more mafic enclaves. The MMEs 
sometimes show core-tail structures, in which the tail 
displays an S-shaped bend, suggesting that they were at 
least partly plastic when introduced into the felsic magma.   
 
 
PETROGRAPHY  
 
The host rocks and their enclaves are usually equi-
granular and holocrystalline, but porphyritic texture also 
exists in the enclaves. The main constituents in the 
granitoids are plagioclase (An17–55), quartz, biotite 
(mostly eastonitic), orthoclase and amphibole (magnesio-
hornblende and edenite), with accessory acicular apatite 
and zircon in a hipidiomorphic granular texture (Kocak 
et al. 2011). The MMEs have similar mineralogy with 
their host. Major components are plagioclase (An18–64, 
75–85%), amphibole (5–15%), biotite (5–10%), orthoclase 
(0–5%) and minor quartz, titanite and acicular and stubby 
prismatic apatite. The texture is mostly equigranular and 
fine-grained, but sometimes porphyritic and poikilitic. 
The greenish dyke is predominantly made up of 
plagioclase, hornblende, chlorite and minor quartz in a 
holocrystalline porphyritic texture. 
 
 
ANALYTICAL  METHODS 
 
Whole-rock major and trace element analyses of 29 
samples were performed at Acme Lab. Ltd. (Vancouver, 
Canada). Major oxide and trace element compositions 
were determined by the inductively coupled plasma 
emission spectrometer from pulps after 0.2 g rock 
powder was fused with 1.5 g LiBO2 and then dissolved 

in 100 mm3 5% HNO3. Rare earth elements (REEs) 
were analysed by inductively coupled plasma mass 
spectrometry from pulps after 0.25 g rock powder was 
dissolved with four acid digestions. Analytical un-
certainties vary from 0.1% to 0.04% for major elements, 
from 0.1% to 0.5% for trace elements and from 0.01 to 
0.5 ppm for REEs.  

Sr, Nd and Pb isotope compositions were deter-
mined using a Finnigan Mat 262 mass spectrometer at 
the GEOMAR research centre (Kiel, Germany). Replicate 
analyses of Sr–Nd–Pb isotopes on the same samples at 
GEOMAR were within the analytical uncertainties. Sr was 
measured in static mode and 87Sr/86Sr normalized within-
run to 86Sr/88Sr = 0.1194. NBS 987 gave an 87Sr/86Sr ratio 
of 0.710240±0.000008. The acid washed samples were 
boiled in 6N HCL for 1 h. The 143Nd/144Nd ratio was 
normalized within-run to 146Nd/144Nd = 0.7219 and 
measured in static mode where the Nd standard La Jolla 
yielded an average ratio of 143Nd/144Nd = 0.51196276.  
All Pb isotope analyses were corrected to NBS 981 (Todt 
et al. 1996) for fractionation. Sample reproducibility is 
estimated at ±0.02, ±0.015 and ±0.03 (2σ) for 206Pb/204Pb, 
207Pb/204Pb and 208Pb/204Pb ratios, respectively. 
 
 
RESULTS 

Whole-rock  geochemistry 
 
The whole-rock chemical compositions of representative 
samples from HP host rocks and their MMEs are listed 
in Table 1.  

The granitic rock samples of the HP plot mostly in 
the granite, monzogranite (adamellite) and granodiorite 
fields with minor tonalite, whereas samples of MMEs 
primarily plot in the fields of quartz monzodiorite/ 
monzogabbro,  quartz  diorite/gabbro  (Fig. 4a)  with 

 

 
Fig. 3. Field photographs of MMEs displaying sharp (a) and cuspate (b) contacts with granodiorite (a) and granite (b). 
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Table 1. Major (wt%), trace and rare-earth element (ppm) analyses of the Horoz pluton 

 
Enclave Dyke Sample 

12 15 23 h36 11b 13a 17b 18a 21a 24a 40a 42 43 

SiO2   56   55.8 56 58.9 57.9 58.5 59.3 62.8 57.3 58.7 57 55.3 56.8 

TiO2     0.72     0.65 0.75 0.37 0.6 0.61 0.48 0.4 0.63 0.58 0.58 0.71 0.69 

Al2O3   17.3   18.7 16.9 19.2 18.2 17.7 17.3 17.5 18.1 17 18.3 17.6 17.4 

Fe2O3t     8.09     6.95 7.06 5.58 6.61 7.26 7.38 4.5 6.33 5.43 5.79 5.74 6.96 

MgO     3.28     3.25 4.37 1.47 2.66 2.25 2.38 1.43 3.17 3.44 2.51 3.93 4.47 

MnO     0.18     0.19 0.28 0.1 0.16 0.14 0.14 0.09 0.19 0.22 0.17 0.08 0.08 

CaO     5.05     4.86 5.89 4.5 4.92 4.1 3.54 3.84 5.73 5.25 5.43 5.64 5.36 

Na2O     5.04     4.98 4.57 4.81 5.49 4.68 4.59 4.48 5.3 4.97 4.71 4.22 4.14 

K2O     1.2     1.5 0.92 2.65 0.98 2.77 3.12 3.18 1.03 1.92 2.3 1.89 1.67 

P2O5     0.42     0.25 0.19 0.38 0.25 0.22 0.2 0.27 0.19 0.2 0.23 0.25 0.23 

LOI     2.5     2.9 3 1.9 2.1 1.7 1.5 1.5 1.9 2.3 2.9 4.4 2 

Total   99.8 100 99.9 99.9 99.9 99.9 100 100 99.9 100 99.9 95.4 99.8 

Ni      3.7     4.5 14.1 3.2 5.7 4.4 8.2 2.5 5.5 5.3 5.5 53 47.3 

Cr bdl   20 100 bdl 20 20 30 bdl 10 40 bdl 200 190 

Co     11   11 19 6 18 7 8 6 14 11 12 18 19 

Ga     21   23 20 19 20 20 19 18 18 18 19 17 16 

Rb     46   40 40 72 35 63 75 68 47 57 85 57 56 

Sr 1149 509 389 807 436 456 481 592 551 433 549 909 892 

Ba   222 267 157 373 163 317 411 376 176 209 420 629 458 

Zr   124 142 97 120 143 119 144 197 113 101 133 140 141 

Nb     24   31 32 30 30 37 28 21 14 22 34 11 11 

Ta       2     2 2 3 2 3 2 2 1 1 2 1 1 

Th     15     7 9 6 10 11 13 14 7 10 9 7 7 

U       5   11 4 3 4 5 5 5 3 6 7 2 2 

Y     50   44 44 76 42 51 41 30 23 31 49 22 21 

La     79.2   13.1 18.4 15.4 17.2 16.6 17.9 14.3 14.3 21.2 12.5 30.6 26.3 

Ce   174   36.9 52.4 44.9 51.6 55.4 50.5 37.6 35.4 58.4 38.7 61.3 55.9 

Pr     20.2     5.22 6.87 6.81 7.07 7.79 6.78 4.79 4.12 7.36 5.85 6.64 6.3 

Nd     74.7   22 26 33.3 27.6 33 27.1 19.2 16.5 28.4 25.8 24.1 23.8 

Sm     11.1     5.04 5.18 9.36 5.79 6.8 5.85 3.82 3.06 5.2 6.51 4.11 3.89 

Eu       2.83     1.22 1.85 1.67 1.87 1.94 1.39 1.01 1.08 1.63 1.43 1.24 1.21 

Gd       7.04     4.9 4.74 9.62 4.75 5.9 5.23 3.56 2.76 4.3 6.06 3.17 3.28 

Tb       1.34     1.02 0.97 2.06 1.02 1.24 1.1 0.73 0.59 0.83 1.28 0.65 0.64 

Dy       6.32     5.03 4.98 10.2 4.84 5.96 5.2 3.64 2.86 4.12 6.38 2.99 2.88 

Ho       1.31     1.13 1.13 2.22 1.07 1.33 1.13 0.8 0.64 0.85 1.35 0.64 0.61 

Er       4.22     3.89 3.79 6.84 3.71 4.56 3.59 2.67 2.07 2.74 4.62 1.99 1.87 

Tm       0.66     0.58 0.59 0.99 0.58 0.69 0.55 0.4 0.31 0.4 0.68 0.28 0.28 

Yb       4.2     4.08 4.24 6.04 3.82 4.44 3.5 2.78 2.01 2.75 4.48 1.73 1.8 

Lu       0.71     0.71 0.73 0.89 0.65 0.71 0.58 0.48 0.36 0.45 0.74 0.29 0.27 
___________________ 

bdl: Below detection limit 
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Table 1. Continued 

Granodiorite  Granite Sample 

45 4b 28 29 30 33 40b 39 44 47 27 10b 1a 21b 3c 4a 

SiO2 63.84 67.7 66.5 68.2 70.5 65.9 65.7 67.7 68.7 67.9 68.8 71.8 69.8 73.9 69.7 67.6 

TiO2 0.39 0.26 0.32 0.29 0.25 0.34 0.33 0.31 0.27 0.28 0.27 0.22 0.27 0.15 0.24 0.48

Al2O3 16.89 14.9 16.4 15.4 15.7 15.9 16.3 16.1 15.9 16.3 15.2 14 14.7 13.3 14.2 13.2 

Fe2O3t 5.08 4.59 3.53 4.13 2.53 4.02 4.03 4.42 2.91 3.17 3.44 2.46 1.03 2.07 4.07 5.84

MgO 1.43 0.67 1.23 0.99 0.59 0.94 1.13 0.75 0.83 0.83 0.86 0.67 0.19 0.37 0.83 1.22

MnO 0.04 0.05 0.08 0.06 0.04 0.07 0.07 0.04 0.03 0.04 0.06 0.05 0.03 0.04 0.04 0.08

CaO 3.25 1.11 3.12 3.1 1.6 3.96 3.78 2.7 2.78 2.79 1.87 1.34 3.04 1.62 2.09 1.37

Na2O 4.4 3.45 4.47 4.3 4.16 4.27 4.15 4.26 3.98 4.28 4.28 3.86 3.81 3.52 3.69 2.61

K2O 3.25 5.85 2.52 1.97 3.15 2.37 2.71 2.1 3.07 3.01 3.83 4.42 5.11 4.19 3.89 5.85

P2O5 0.25 0.23 0.16 0.13 0.14 0.17 0.17 0.16 0.13 0.15 0.11 0.08 0.15 0.11 0.11 0.2 

LOI 1.1 1.1 1.7 1.3 1.4 2.1 1.5 1.4 1.4 1.1 1.2 1.1 1.9 0.8 1.1 1.5 

Total 99.93 99.9 100 99.9 100 100 99.9 99.9 99.9 99.9 100 100 100 100 100 99.9 

Ni 10   5   4   5 1 3     4     6 2 2 3.5 1.8 1.9 1.4 6.7 5.2

Cr bdl   20 20   20 bdl 10   10   20 bdl bdl 10 bdl bdl bdl 20 10 

Co 5   4 5 5 2 6     6   10 4 3 4 3 1 2 4 8 

Ga 19   15 17 16 16 17   16   16 15 16 15 14 14 13 14 15 

Rb 87   120 71 49 95 54   67   62 67 71 100 129 117 106 85 102 

Sr 498   580 479 479 364 599 585 500 396 471 524 388 552 347 528 473 

Ba 592 2072 463 428 614 611 594 328 579 557 498 485 714 380 572 1790 

Zr 141   156 145 158 182 161 174 155 162 168 125 106 152 112 134 234 

Nb 19.1   14 14 14 14 14   15   14 12 12 15 16 16 11 12 19 

Ta 2       1 1 1 1 1     1     1 1 1 1 2 1 1 1 1 

Th 6     13 6 9 15 10   12     8 10 13 16 21 16 17 14 23 

U 5       4 2 4 3 2     4     1 2 4 3 9 4 2 3 3 

Y 23     19 18 22 21 29   20   10 17 21 17 17 16 16 15 34 

La 26.8 31 28.7 30 38.3 51.4 31.5 17.1 22.7 31.2 21.9 24.7 19.9 21.2 22.4 70.6 

Ce 55.3 63.2 60.3 63 77.9 102 65.5 38.7 46.7 64.1 46.6 51 51.2 42.2 45 139 

Pr 5.76 6.6 6.26 6.76 7.94 10.6 6.95 4.08 4.86 6.61 4.99 5.19 5.66 4.39 4.73 14 

Nd 19.9 22.9 21.3 23.8 27.1 35.7 23.2 14.7 17 22.5 17.6 17 18.7 14.9 16.8 47 

Sm 3.45 3.76 3.35 3.9 4.25 6.06 3.83 2.54 2.81 3.65 2.93 2.53 3.12 2.52 2.65 7.24

Eu 0.9 0.99 0.95 0.93 0.99 1.34 0.96 0.8 0.83 0.91 0.78 0.59 0.71 0.62 0.74 1.39

Gd 3 2.83 2.47 3 3.17 4.55 2.89 1.78 2.12 2.82 2.27 1.89 2.31 1.93 1.96 4.99

Tb 0.63 0.54 0.49 0.61 0.63 0.95 0.57 0.34 0.44 0.58 0.48 0.4 0.45 0.39 0.39 1 

Dy 3.13 2.38 2.23 2.88 2.78 4.47 2.67 1.56 2.17 2.69 2.2 1.79 2.08 1.93 1.85 4.46

Ho 0.65 0.5 0.51 0.6 0.61 0.91 0.57 0.3 0.45 0.57 0.49 0.41 0.45 0.41 0.38 0.91

Er 2.12 1.62 1.58 1.91 1.95 2.6 1.82 1.01 1.5 1.9 1.6 1.46 1.4 1.37 1.29 2.91

Tm 0.28 0.25 0.24 0.29 0.3 0.39 0.28 0.16 0.23 0.31 0.26 0.25 0.23 0.21 0.2 0.41

Yb 1.89 1.61 1.58 1.81 2.01 2.31 1.82 1.04 1.55 1.9 1.8 1.68 1.54 1.41 1.37 2.63

Lu 0.3 0.28 0.26 0.31 0.35 0.36 0.3 0.19 0.25 0.34 0.31 0.32 0.26 0.25 0.24 0.44
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minor quartz monzogabbro/monzodiorite. The chemical 
compositions of the greenish dyke in the HP are similar 
to MME, and samples of these dykes plot in the quartz 
monzodiorite/monzogabbro and quartz diorite/gabbro 
fields. In the A/NK versus A/CNK diagram (Fig. 4b), 
most of the samples from the HP rocks and MMEs 
plotted in the metaluminous field, only a few Horoz host 
rocks are found in the peraluminous field. All HP 
samples show in the high-K calc-alkaline features in the 
K2O versus SiO2 diagram (Fig. 4c). Besides, the granite 
member of the HP displays a slightly more potassic 
character by plotting within the shoshonite field.   

In comparison with the MMEs and their host rocks, 
the greenish dyke samples show more enrichment in 

MgO, Cr, Co, Pb, Sr, Ba, La and more depletion in 
Na2O, Nb, Ta, Yb and Lu. With increasing SiO2  
(Fig. 5), a negative correlation exists in CaO, MgO, 
FeOt, TiO2 and P2O5 (not shown). However, the 
samples are scattered in SiO2 versus trace element 
diagrams (Fig. 5). 

The primitive mantle-normalized trace element 
diagrams show consistent patterns for the HP and its 
MMEs (Fig. 6). The dyke samples differ from the 
MMEs and their host in having positive Pb anomaly and 
no Eu anomalies. Both the host rocks and MMEs have 
usual consistent patterns, with well-developed negative 
Ba, Nb, Ti and P anomalies. Chondrite-normalized REE 
patterns of all rocks are light REEs (LREEs) enriched 

 

 

 
Fig. 4. (a) (K – (Na + Ca)) vs (Si/3 – (K + Na + 2Ca/3))
diagram (Debon & Le Fort 1983). Parameters
are expressed as gram-atom*10 000. Abbreviations:
gr, granite; ad, adamellite; gd, granodiorite; to, tonalite;
sq, quartz syenite; mzq, quartz monzonite; mzdq, quartz
monzodiorite; dq, quartz diorite (quartz gabbro–quartz
anorthozite); s, syenite; mz, monzonite; mzgo, monzo-
gabbro (monzodiorite); go, gabbro (diorite–anorthozite).
(b) A/NK vs A/CNK (after Shand 1943). (c) K2O vs
SiO2 plot (after Peccerillo & Taylor 1976). 
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Fig. 5. Selected major and trace
element Harker variation diagrams
for samples from the Horoz
granitoids, including dykes and
enclaves. 
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relative to heavy REEs (HREEs). The (La/Yb)N values 
of all rocks are in the same range, indicating similar 
sources. However, the patterns are relatively fractio- 
nated due to the fractionation of hornblende and/or  
feldspar phases. The REE patterns of the granitic rocks  
[(La/Yb)N 8.2–18] are slightly concave-upward, suggesting 
amphibole fractionation (Fig. 7a, b). They have negligible 
Eu anomalies, but a few samples display significant 
negative Eu anomalies (e.g. Eu/Eu* = 0.71). The MMEs 
are less fractionated [(La/Yb)N 1.7–12.7] than the 
granitic rocks. 

Sr–Nd–Pb  isotopes 
 
Host rocks have a low and variable initial 87Sr/86Sr ratio 
(0.7047) and negative epsilon values (Fig. 8a). A range 
of initial ratios (0.7046–0.7058) for the MMEs was 
obtained by calculating the measured ratios for the 
inferred emplacement age (50 Ma). In general, the MMEs 
have an initial 87Sr/86Sr ratio and Nd isotope ratios similar 
to those of their hosts. Host rocks and their MMEs have 
Nd model ages relative to a depleted mantle reservoir 
(TDM) of 0.74–0.84 and 0.75–1.38 Ga, respectively.  

 

 

 

Fig. 6. Primitive mantle normalized spider diagrams of granite samples. Normalizing values are from Sun & McDonough 
(1989). 
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The 206Pb/204Pb ratios are between 19.333 and 
19.362 in host rocks and between  19.691 and 19.829 in 
the enclaves. In the Pb-isotope ratios (Fig. 8b) diagram, 
although MME seems to plot in the mid-ocean ridge 
basalt (MORB) field, those samples are also at the 
Northern Hemisphere Reference Line (NHRL), indicating 

that the subduction-related component was dominated 
by the material contributed by aqueous fluids rather 
than by sediments. The MMEs are found on the area 
of Pacific MORB, while host rocks plot into the field 
of oceanic sediments and at the boundary of enriched 
mantled-II. 

 

 
Fig. 7. Chondrite normalized rare-earth element patterns of the host rocks and their MMEs with dyke samples. Normalizing values
are from Boynton (1984). 
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DISCUSSION  

Source  characteristics  and  origin  of  the  MMEs  
and  dykes 
 
The MMEs and dykes show low Ni (4–14 ppm and 47–
53 ppm, respectively) and Cr (mostly < 30 ppm and 
190–200 ppm) values, which are lower than the Ni–Cr 
concentrations (Ni = 250–300 ppm, Cr = 500–600 ppm) 
expected for a primitive basaltic magma derived from  
a mantle peridotite source (e.g. Wilson 1989). All these 
features suggest that the studied MME and dyke magmas 
could have undergone fractional crystallization (Taylor & 
McLennan 1985) and/or crustal contamination. In the 
MME samples, SiO2 shows a negative correlation with 
MgO, FeOt, CaO and TiO2, suggesting crystal fractionation 
of hornblende (±pyroxene) and Fe–Ti oxide (Fig. 5).  

The MMEs and dykes have relatively low SiO2 
contents (54–63% and 55–57%) and intermediate to 
high molar Mg# (34–56 and 56–58), which is inconsistent 
with the partial melting of the mafic lower crustal rocks 
and requires a mantle-derived component. The Nb/Ta 
ratio is a good indicator of pressure, and the ratio 
decreases as pressure increases (Azizi et al. 2015). 
Accordingly, the Nb/Ta and Zr/Sm ratios of the MMEs 
and dyke samples can also be used to discriminate their 
formation under eclogite-facies or amphibolite-facies 
conditions (Hoffmann et al. 2011). The fairly low Nb/Ta 
(10–20) and Zr/Sm (11–51) ratios for the MME rocks from 
the HP suggest that they formed under garnet amphibolite-
facies rather than under eclogite-facies conditions.   

Most of the samples with no Eu anomalies 
accompanied by positive Sr anomalies (Fig. 6b) could 
reflect melting at pressures above the plagioclase stability 
field (>15 kbar, >~55 km) or plagioclase accumulation. 
The high Sr abundances (389–1149 and 892–909 ppm, 
respectively) in the MMEs and dykes also support this 
suggestion. However, the samples have high Y (23–76 
and 21–22 ppm) and correspondingly low Sr/Y (9–24 
and 41–42 ppm), which indicates that plagioclase was 
possibly in the residue. Unfractionated HREE (and Y) 
patterns generally suggest that the mafic magma was 
possibly produced outside the garnet stability field (i.e. 
plagioclase stable without garnet; Drummond & Defant 
1990; Rapp et al. 1991; Springer & Seck 1997; Martin 
1999; Pe-Piper et al. 2002). But, garnet as a residual 
mineral would be able to produce (Gd/Yb)N ratios > 1 
(e.g. Martin 1999; Klein et al. 2000; Martin et al. 2005). 
Therefore garnet may exist in the source of the mafic 
rocks. Accordingly, the experimental melting of meta-
basalts under fluid-absent conditions (Rapp et al. 1991; 
Rapp & Watson 1995) indicates that pressures >0.8 GPa 
are required to stabilize garnet, and ≥1.2 GPa for garnet 
throughly replaces plagioclase. Alternatively, most of 
the mafic rocks may have been derived from sources 
located at depths between 30 and 44 km by assuming  
1 kbar = 3.7 km for the continental crust (Tulloch  
& Challis 2000). The amphiboles from the enclaves  
yield a maximum pressure of 4.1 ± 0.6 kbar at 730 °C 
(Kocak et al. 2011), suggesting the crystallization of 
the mafic magma at least at 15 km.   

 

 
 

Fig. 8. (a) (87Sr/86Sr)t vs ɛNd(t) plot of the Horoz and Karamadazı granitoids and their mafic enclaves. Composition fields for
Karamadazı granitoids from Kocak (2008), for Central Anatolian granitoids from Ilbeyli et al. (2004). DM, depleted mantle.
(b) (206Pb/204Pb) vs (208Pb/204Pb) variation diagram of the Horoz samples. Northern Hemisphere Reference Line (NHRL)
indicated (Hart 1984). 
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The existence of the greenish-coloured dyke 
resembling enclaves in adjacent granitoids in the HP 
may suggest that the magma of the MMEs can exist 
either independently of, or as a separate layer in, their 
host granitoid magma bodies. In general, the dykes 
exhibit a similar pattern to that of the host rocks, with  
a high (La/Lu)N ratio (10.4–11.3). In comparison with 
the scattered smaller MMEs, the dykes seem to be less 
differentiated (more enrichment in MgO, Cr, Co), but 
more enriched in Pb, Sr, Ba and LREEs. This may 
indicate either distinct parental magmas, or different 
mechanisms or degrees of interaction of the mafic magma 
with the partially crystallized host-granite, or both. Along 
with their identical occurrences with the MMEs, this 
precludes that the dykes correspond to several pulses of 
mafic magmas. The higher content of large ion lithophile 
elements (LILEs) and LREEs in the dykes could suggest 
stronger interactions with the granites, diffusion of water 
and alkalis, etc. A pronounced negative Nb, P, Ti anomaly 
(Fig. 6b) may also support this suggestion.      

 
Magma  mixing  versus  restites  or  autoliths 

 
Based on their mafic composition, the MMEs could 
have a cumulate or autolith origin (e.g. Noyes et al. 1983; 
Chappell et al. 1987; Clemens & Wall 1988; Shellnutt  
et al. 2010; Dahlquist 2002; Donaire et al. 2005), which 
ignores the grain size differences between the MMEs and 
host granitoids. Some major and trace elements, such  
as Al2O3, Na2O, Rb, Ba, Sr and Zr (Fig. 5) exhibit non-
linear variations. Among these, SiO2 versus Ba and  
Sr (Fig. 5) is of particular interest, in which Ba and Rb 
contents change significantly for little change in SiO2 in 
the MMEs. Dispersion on the diagrams is of paramount 
evidence of biotite ‘cumulus’. The small amount of biotite 
may induce an increase in Ba and Rb contents in mafic 
samples due to their high partition coefficients (KD) for 
Ba (6.36, Philpotts & Schnetzler 1970) and for Rb 
(3.53, Matsui et al. 1977). Plagioclase and K-feldspar 
have low KD for Ba (0.36, López-Ruíz & Cebriá 1990) 
and for Rb (0.07–0.76, Icenhower & London 1996), 
respectively, therefore they are unlikely to cause this 
enrichment. However, the MMEs are fine-grained, 10 to 
20 times smaller in comparison with the same phases  
in the host granitoid and have low Ni and Cr, which 
suggests that the enclaves as a whole cannot be a cumulate 
of the pluton itself. It is also remarkable that all the 
enclaves and host rocks have similar total REE concen-
trations and sub-parallel REE patterns, which are incon-
sistent with the autolith model. The presence of MMEs 
in the granitoids could also be indicative of the evolution 
of the HP through the restite unmixing mechanism 
(Chappell et al. 1987; Chen et al. 1989; Chappell & 
White 1992; Chappell 1996; White et al. 1999). The 

field characteristics of the MMEs, and lack of linear 
trends for K2O (Fig. 4c), Ba, La, Zr with SiO2 (Fig. 5) 
exclude restite origin. Therefore, the MMEs in the studied 
HP could have developed mostly by mingling/mixing 
between near-contemporaneous mafic and felsic magmas 
(e.g. Vernon 1984; Wiebe et al. 1997; Barbarin 2005; 
Hawkesworth & Kemp 2006; Kocak 2006; Feeley et al. 
2008; Chen et al. 2009; Kocak et al. 2011; Liu et al. 
2013).   

The magma mixing process could take place before 
or after the injection of the enclave-forming magma into 
the felsic host magma. Since the MME samples are 
mostly non-porphyritic, fine-grained and enclosed in 
another enclave, the mixing process probably happened 
prior to the injection of the enclave-forming magma. 
Furthermore, the mafic enclaves are characterized by 
relatively low Mg, Ni and Co, suggesting that they were 
much evolved before their injection into the host felsic 
magmas. This implies that significant fractionation of 
hornblende (± pyroxene) had occurred before and during 
the process of crustal contamination/magma mixing at 
depth. The MMEs are characteristically enriched in P, 
Ti, Y, Nb, and HREEs, possibly due to selective inter-
diffusion of these elements into the less polymerized 
magmas. These elements were consequently concen-
trated in apatite, titanite and hornblendes due to their 
high KD for these elements (López-Ruíz & Cebriá 
1990; Klein et al. 1997), keeping their low activity in 
the melt. Such low activity in the mafic melt gives rise 
to the continuity of ‘Uphill’ diffusion, as described for 
K due to crystallization of biotite by Johnston & Wyllie 
(1988). Selective diffusion of these elements may be 
attributed to the crystallization of biotite as cumulate. 
The Ba depletion in most enclaves could be connected 
to the complicated feldspar transfer processes at the 
contact with host magmas and somewhat to the dilution 
effect induced by the inward migration of Si and alkalis 
as suggested by some researchers (Bussy 1991; Debon 
1991; Orsini et al. 1991). 

In general, MME samples have higher Nd than their 
hosts (Fig. 8a, Table 2), suggesting isotopic equilibration 
between mafic and felsic magmas, which is usually more 
easily achieved than chemical equilibration since isotopic 
exchanges proceed more quickly than chemical exchanges 
(Lesher 1990). The MMEs have generally 87Sr/86Sr values 
close to or in the range of that for the respective  
host granite, suggesting a granite–enclave interaction 
(Fourcade & Javoy 1991). The MMEs and host rocks 
have distinct 206Pb/204Pb, but similar 208Pb/204Pb values 
(Fig. 8b). Small variations in the amount and com-
position of Pb contributed to the mafic melt by the 
relatively elevated 206Pb/204Pb of zircon compared to 
208Pb/204Pb would result in large relative changes in 
206Pb/204Pb with only small changes in 208Pb/204Pb. 
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Source  characteristics  and  genesis  of  the  host 
granitic  rocks 
 
The host granitic rocks are characterized by pronounced 
negative Nb, Ba, P and Ti anomalies but are enriched in 
Rb, Th and K. These features are in accordance with 
those of typical crustal melts, e.g., Himalayan granites 
(Harris et al. 1986) and granitoids of the Lachlan Fold 
belt (Chappell & White 1992), and the subduction com-
ponent. However, the host rocks have relatively low Sr(t) 
(0.7067) and high εNd(t) values (–0.2 to 1.8) (Table 2, 
Fig. 8a), suggesting mantle material involved in the 
generation of the HP. Similarly, the MMEs in general, 
have an initial 87Sr/86Sr ratio and Nd isotope ratios similar 
to those of their hosts, suggesting significant input of 
a lithospheric mantle-derived component during magma 
generation. The granitoids show high-K–shoshonitic and 
I-type characteristics with a wide range of silica content 
(SiO2 = 64–74 wt%), relatively low-intermediate Mg# 
(22–41) and low Ni content (1.4–10.0 ppm), all of which 
may indicate that they could be developed from the 
mixing of the lower crust and mantle-derived magmas 
(e.g. Barbarin 1999). Hence average Nb/Ta ratios are 
17.5 for mantle-derived and 11–12 for crustal-derived 
magmas (Green 1995), Nb/Ta ratios for the felsic samples 
vary between 10.05 and 18.12, suggesting crustal- and 
mantle-derived magmas in the generation of the HP. 

Both MMEs and felsic samples show colinear 
variation in the Harker diagrams, suggesting that the 
host granites and MMs/dykes are possibly variably 
differentiated products of the same parent magma which 
derived from mixing melts of lithospheric mantle and 
crustal components. SiO2 increases with decreasing MgO, 

FeOt, CaO and TiO2 and P2O5, suggesting fractionation 
of hornblende (± pyroxene), Fe–Ti oxide and apatite. 
Amphibole has a high KD for heavy REEs, but even 
higher for the medium and heavy REEs (such as Dy); 
therefore, amphibole fractionation can be traced by 
decreasing Dy/Yb ratios with differentiation (Davidson 
et al. 2007a, 2007b, 2008). Accordingly, the amphibole 
fractionation is indicated by concave-upward REE 
patterns without significant Eu anomalies (see Tepper  
et al. 1993, Fig. 7a, b). In the host rocks, Zr and P2O5 
show negative correlation with SiO2, suggesting zircon 
and apatite fractionation. Aplitic suites on the HP most 
probably represent such comagmatic highly differentiated 
late-stage melts.  

The existence of MMEs with mode of occurrence 
and mineralogical (Kocak et al. 2011) and geochemical 
characteristics suggest mafic–felsic interaction and 
mingling (Barbarin & Didier 1992; Barbarin 1999; 
Ferré & Leake 2001; Kocak 2006) by the injection of 
hot mafic magma into felsic magma (source mixing). 
Langmuir et al. (1978) showed that in the ratio–ratio 
and ratio–element plots, data consistent with mixing lie 
along a hyperbolic curve for both isotopic and elemental 
ratios, while a linear array forms when the ratios of the 
concentrations of the two denominators are the same  
for all data points. In the samples, these characteristic 
hyperbolic mixing arrays are observed in plots of 
Al2O3/CaO versus Na2O/K2O, Ti/Ba versus Ti, and a 
linear trend is observed in a plot of Al2O3/CaO versus 
Na2O/CaO (Fig. 9a–c). Accordingly, mafic (lithospheric 
mantle) and felsic (crustal component) magma mixing 
may alter both the elemental and isotopic compositions 
of magmas prior to the assimilation/fractionation processes.  

 

Table 2. Results of the whole-rock Sr, Nd and Pb isotope analyses of the enclave and hosts 
 

87Rb/ 87Sr/ 87Sr/ 147Sm/ 143Nd/ 206Pb/ 207Pb/ 208Pb/ Sample 
86Sr 86Sr 86Sr(t) 144Nd 144Nd 

ɛNd(t) TDM 
(Ga) 204Pb 204Pb 204Pb 

17b 0.4480 0.7050 0.7047 – – – – – – – 

21a 0.2475 0.7059 0.7058 – – – – – – – 

13a 0.3691 0.7054 0.7051 0.12458 0.5126   0.1 0.91 – – – 

24a 0.3790 0.7054 0.7051 0.1107 0.5126   0.7 0.75 19.829 15.751 39.543 E
nc

la
ve

s 

40a 0.4484 0.7050 0.7047 0.15255 0.5126 –0.6 1.38 19.691 15.731 39.395 

Granite 21b 0.8855 0.7052 0.7046 0.10225 0.5126 –0.2 0.75 19.362 15.718 39.466 

40b 0.3295 0.7052 0.7050 0.09981 0.5126 –0.2 0.74 19.333 15.712 39.430 

47 0.4370 0.7054 0.7051 0.09807 0.5125 –1.8 0.84 – – – 

29 0.2951 0.7050 0.7048 – – – – – – – 

G
ra

no
di

or
it

e 

45 0.5085 0.7055 0.7051 – – – – – – – 
_____________________ 

Sr- and Nd-isotope initial ratios calculated at 50 Ma. TDM values calculated using present-day (147Sm/144Nd)CHUR = 0.1967 
and (143Nd/144Nd) CHUR = 0.512638. 
CHUR: Chondritic Uniform Reservoir. 
–, No analyses. 
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Fig. 9. Ratio–ratio (a and c) and ratio–element (b) plots. 
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It has also been suggested that I-type granites most 
likely form by the mixing of crustal materials and 
mantle-derived magmas rather than by the remelting of 
ancient meta-igneous crustal rocks (Kemp et al. 2007; 
Li et al. 2009; Zhu et al. 2009; He et al. 2010). Besides, 
relative heterogeneity of the initial Sr ratios (0.7046–
0.7051) in the host rocks could be attributed to a 
difference in the degree of contamination of magmas with 
upper crustal materials.   
 
Adakitic  versus  TTG 
 
Kadioglu & Dilek (2010) suggested that the HP shows 
chemical characteristics of high-Al adakitic compositions, 
which could have formed by the partial melting of  
the hydrated lithospheric mantle and the amphibolitic 
mafic lower crust that was triggered by delamination-
induced asthenospheric upwelling. However, all samples 
from the HP usually have lower Mg# [(molar 100  MgO/ 
(MgO + FeOt)) < 0.41], Ni (~4 ppm) and Cr (~9 ppm) 
(Fig. 10a), and higher K (~ 3.6 wt%), Ba (~712 ppm) 
and Rb (~86 ppm) contents  than that of adakites. The 
samples have also high Sr contents and are found on the 
TTG area, rather than on the arc one in Fig. 10b.   

It is widely accepted that TTG magmas were created 
by the partial melting of hydrous metabasaltic rocks 
transformed into garnet-bearing amphibolite or eclogite, 
under a variety of fluid conditions (Sen & Dunn 1994; 
Zamora 2000). Experimental studies show that the partial 
melting of the mafic lower crust could produce met-
aluminous granitic magmas regardless of the degree of 

melting (Sen & Dunn 1994; Wolf & Wyllie 1994; Rapp 
& Watson 1995). High abundances of Al2O3 (≥19 wt%) 
in an amphibolite-derived liquid are the result of high 
H2O (water-saturated) and/or high anorthite contents in 
the mafic protolith source (e.g. fig. 13 in Beard & Lofgren 
1991; fig. 9 in Wolf & Wyllie 1994). Nevertheless, host 
rocks have lower Al2O3 contents (13.17–16.4 wt%) than 
the liquids developed during H2O-saturated amphibolite 
partial melting experiments. Accordingly, granitoids from 
the HP were possibly formed under fluid-absent/vapour-
absent conditions (with the only H2O derived from the 
breakdown of hydrous minerals) and/or low anorthite 
contents in the mafic source. Figure 11 shows that the 
granitoids, particularly granites, could have formed by 
low-pressure (100–700 MPa), 20–50% dehydration 
melting of a basaltic/amphibolitic source. Both the mafic 
rocks and dykes contain high Al2O3 and plot (Fig. 11) 
between the fields of ‘low water basalt melting’ and 
‘1000 Mpa, no-water melting of a basaltic/amphibolitic 
source’, suggesting relatively higher-pressure conditions 
in comparison with their host rocks during the partial 
melting event.   

The TTGs require two main mechanisms to account 
for their petrogenesis: (1) the partial melting of the 
subducted oceanic crust (i.e. slab melts) in a convergent 
margin with usually higher Mg# values and Cr and Ni 
concentrations (e.g. Martin 1986, 1999; Drummond & 
Defant 1990; Foley et al. 2002; Kamber et al. 2002; 
Smithies et al. 2003) due to the interaction of the slab-
derived melt with the overlying mantle wedge during 
ascent (Rapp et al. 1999) or (2) the melting of the 

 

 
Fig. 10. (a) Cr vs Ni variation plots for granitoids. Boundaries of tonalites–trondhjemites–granodiorites (TTGs) and adakite fields
are from Condie (2005). (b) Sr vs Y diagram. Archaean TTGs (Martin & Moyen 2002); ‘ordinary’ arc magmas (GEOROC project,
http://georoc.mpch-mainz.gwdg.de/georoc). 
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thickened mafic crust or underplated basalt with low Mg# 
values and low Cr and Ni concentrations (e.g. Atherton 
& Petford 1993; Petford & Atherton 1996; Rapp et al. 
1999; Smithies 2000; Condie 2005; Smithies et al. 2009). 
In Fig. 12a, b, samples fall mostly in the field of adakites 
derived from the partial melting of the thick lower crust 
and metabasaltic and eclogite fields, rather than in 
that of adakite rocks derived from the partial melting 
of the delaminated lower crust. The data for adakites 

worldwide exhibit that typical slab melts have low  
Rb/Sr ratios (0.01–0.05); this is in contrast with the 
wide range of Rb/Sr ratios (0.01–0.4) for the adakitic 
rocks that developed from the thickened continental 
lower crust (Huang et al. 2009). Hence, the relatively 
higher Rb/Sr ratios (0.09–0.3 in host rocks, 0.04–0.16  
in MMEs) of the samples from the HP are in 
accordance with their derivation from the thickened 
lower continental crust.    

 

 
 

 

 

Fig. 12. (a) SiO2 vs Mg# for the felsic rocks. Boundaries are from Rapp et al. (1999) and Smithies & Champion (2000). (b) SiO2

vs Ni. Boundaries are from Wang et al. (2006). 

 
 
Fig. 11. SiO2 (wt%) vs Al2O3 (wt%) diagram
showing a possible source for the intrusions. 
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Tectonic  setting 
 
I-type post-collisional granitoids with mantle-crust 
signature develop in many tectonic settings, such as 
intracontinental rifting (Vorontsov et al. 2004; Li et 
al. 2005; Shu et al. 2005), back-arc basins (Hochstaedter 
et al. 1990; West et al. 2004), island arc (Geist et al. 
1995; Qian & Wang 1999), active continental margins 
(Donnelly & Rogers 1980) and the rifting of the passive 
margin (Oberc-Dziedzic et al. 2005). All MMEs and 
greenish dyke have lower Nb/U (average 5.9 and 5.1) 
than an average continental crust (Nb/U = 8.4; Rudnick 
& Fountain 1995). Both MMEs and granitic rocks are 
characterized by pronounced negative Nb anomalies, 
positive Pb anomalies (Fig. 6) and enrichment in LILEs 
and LREEs. The negative anomalies in Nb, Ti and P are 
characteristic of subduction-related magmas, usually 
thought to have resulted from the relative enrichment  
of the mantle source by influx of LILEs through slab 
dehydration (e.g. McCulloch & Gamble 1991). Similarly, 

the host granite displays spikes in Cs, Rb, K and troughs 
in Nb and Ti (Fig. 6), which may represent the continental 
crust developed by the chemical differentiation of arc-
derived magmas (Taylor & McLennan 1995). Besides, 
low La/Th (1.2–5.1) and medium-high Ba/Nb (24–145) 
are also typical for the rocks formed in relation with the 
subduction zone (Sun 1980).  

The most mafic compositions in the granite (lowest 
in SiO2, and highest in MgO and Co) have the highest 
K2O and Na2O  contents as well as anomalously high 
LREE, P, Zr and Th contents and slight negative Eu 
anomalies, which are characteristic of A-type granites. 
However, they differ from A-type granites in their 
unelevated Rb/Sr contents or intermediate-high Ca and 
Sr contents (Kemp & Hawkesworth 2003) as well as un-
elevated Zr + Nb + Ce + Y contents (mostly <350 ppm). 

In the plot of Y + Nb versus Rb of Pearce et al. 
(1984), all granitoid samples are clearly found in ‘post-
orogenic granite’ (POG) fields (Fig. 13a). In the plot of 
SiO2 versus Rb/Zr (Harris et al. 1986), the samples are 

 

 
 
 
 
Fig. 13. Geotectonic setting of the Horoz granitoids 
and their enclaves. (a) Pearce et al. (1984), Pearce 
(1996). (b) SiO vs Rb/Zr Harris et al. (1986). 
(c) Hf-Rb/30-Ta*3 diagram (Harris et al. 1986). 
Syn-COLLG, syn-collisional granite; WPG, within-
plate granites; VAG, volcanic-arc granite; ORG, 
ocean-ridge granite; POG, post-orogenic granite; 
Post-COLLG, post-collisional granite; L/P COLLG; 
late/post-collisional granite. 
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also concentrated in the ‘post-collisional’ (Post-COLLG) 
area in Fig. 13b. In the Harris et al. (1986) Hf–Rb/30–
Ta*3 triangle (Fig. 13c), the samples straddle mostly the 
boundary of the volcanic-arc granite (VAG) and L/P-
COLLG fields, showing a trend to the L/P-COLLG, 
which is similar to the other granitoids of the CACC 
(Goncuoglu et al. 1991; Akiman et al. 1993; Boztug 
1998, 2000; Kadioglu et al. 2003, 2006; Isik & Kocak 
2005; Boztug et al. 2007).   

 
 

GEODYNAMIC  IMPLICATION 
 
Horoz granitoids have lower radiogenic (87Sr/86Sr = 
0.7045–0.7051) and higher Nd values (–0.085 to –1.75) 
than granitoids from the CACC (87Sr/86Sr = 0.7080–
0.7096; Nd = –4.8, –6.7, Ilbeyli et al. 2004), probably 
owing to a combination of upper crustal contamination 
and heterogeneity of the magma source. Large differences 
in isotopic data of granitoids from the HP and Karamadaz 
pluton, and granitoids from the CACC may imply that 
two groups of magma developed in relation with the 
closure of the Inner Tauride Ocean and the Izmir–
Ankara–Erzincan Ocean, respectively (Kocak 2008).  
The Inner Tauride Ocean started to develop as early  
as the Jurassic between the CACC to the east and the 
Taurides to the west, and consumed by an intra-oceanic 
subduction northwards (Gorur et al. 1998) along the 
Inner-Tauride Suture Zone during the latest Cretaceous 
to early Cenozoic times. Parlak et al (2013b) suggest 
that the HP could have been formed as a result of hard 
collision (continent–continent collision) after soft collision 
(collision of the passive margin with the subduction trench 
and subsequent slab break-off). However, we suggest 
that the HP was emplaced after the last stage of oceanic 
subduction, or at a hiatus of the oceanic subduction  
at ~50 Ma. The pluton then possibly underwent cooling  
in two main pulses, ~38–31 Ma and late Miocene 
(Whitney et al. 2015).  
 
 
CONCLUSIONS  

 
From combined field, geochemical and isotopical studies 
it has been concluded that the mantle-derived mafic 
magmas from which the MMEs crystallized were likely 
mostly formed by mafic–felsic interaction and mingling, 
or prior to the mixing crystal fractionation of hornblende 
(± pyroxene) and Fe–Ti oxide. The MMEs usually 
underwent geochemical and Nd–Sr isotopic equilibration 
with their host granitoids, with resultant K, P, Ti, Y, Nb 
and HREE enrichments. The greenish dykes are distinct 
from the MMEs and display stronger interactions with 
the granites. 

The granitoids have both crustal (distinct negative 
Nb, Ba, P and Ti anomalies but enriched in Rb, Th and K) 
and lithospheric mantle [low Sr(t) (0.7067) and high εNd(t) 
values (–0.2 to 1.8)] geochemical and isotopic signatures. 
They exhibit geochemical characteristics of TTGs, which 
were possibly created by the dehydration melting of a 
basaltic/amphibolitic source in a thickened lower crust. 
The parental granitic magma underwent the mixing of 
mantle-derived mafic magma and crustal felsic magma, 
coupled with fractional crystallization during magma 
ascent before emplacement. Relative heterogeneity of 
the initial Sr ratios (0.7046–0.7051) in the granitoids 
could also indicate contamination of magmas with upper 
crustal materials.   

The HP granitoids differ from granitoids of the CACC 
in their lower radiogenic (87Sr/86Sr = 0.7045–0.7051) 
and higher Nd values (–0.085 to –1.75), in relation with 
the combination of upper crustal contamination and/or 
heterogeneity of the magma source.  
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Litosfäärilise  vahevöö  ja  maakooretekkega  magmade  suhted  Horozi  intrusiooni  

(Türgi)  tekkes  kivimi  geokeemiliste  ning  Sr-Nd-Pb  isotoopgeoloogiliste  andmete  alusel 
 

Kerim Kocak ja Veysel Zedef 
 

Horozi intrusioon on üles ehitatud graniitsetest ja granodioriitsetest kivimitest, milles on rohkesti mikrogranulaarseid 
suletisi. Keemiliselt on intrusiooni kivimid lubileeliselised kuni šošoniitsed (rikastunud Rb ja K ning vaesestunud Y 
ja Lu osas). Graniitne ja granodioriitne kivim on geokeemiliselt sarnane tonaliitse-trondheimiitse assotsiatsiooni kivi-
mile (TTG), viidates võimalikule magmatekkele paksenenud alumise maakoore ülessulamisel. Nii intrusiooni kivim 
kui ka selles olevad mikrogranulaarsed suletised näitavad madalaid 87Sr/86Sr suhteid (vastavalt 0,7046–0,7051 ja 
0,7047–0,7058), madalaid epsiloni Nd väärtusi (–1,8–0,7) ning väga radiogeenset 208Pb/204Pb suhet (39,43–39,47 ja 
39,39–39,54). Kivimite elemendiline ja isotoopgeokeemiline andmestik viitab intrusiooni tekkele läbi litosfäärilise 
vahevöö ning maakooretekkeliste magmade segunemise.  


