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Abstract. The stability domain of discrete-time systems is investigated via reflection coeffi-
cients of characteristic polynomials of the system. Stable polytopes in the coefficients space
of characteristic polynomials are defined starting from the sufficient stability condition in the
polynomial reflection coefficients space using different reflection vector sets. The volumes of
these stable polytopes are calculated via the triangulation method.
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1. INTRODUCTION

Convex approximation of the stability region in the polynomial coefficients
space is a useful tool for many parametric robust control tasks [1,2]. Much
research work has been done to approximate the Schur stability domain by
boxes [3,4], ellipsoids [5,6], polytopes [7−9] or other convex sets [10,11]. In [12]
a linear Schur invariant transformation with a free parameter is introduced in the
discrete polynomial coefficient space which give us a possibility to generalize
polytopic stability conditions such as Cohn’s condition [1], discrete Kharitonov’s
theorem [13] and reflection vector polytopes [9].

An attempt to approximate the stability region in the polynomial coefficient
space via reflection vector polytopes was made in [9,14]. In this paper, a similar
approach will be used, but the starting point is more general: instead of a fixed
reflection vector polytope we are studying stable families of different reflection
vector sets.
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We investigate the geometry of stable discrete polynomials using their coef-
ficients and reflection coefficients. The reflection coefficients are also known
in the literature as Schur–Szegö parameters [15], partial correlation (PARCOR)
coefficients [16], k-parameters [17] or FM-parameters [18,19]. They have been used
efficiently in many applications in signal processing [17], system identification [16]
and robust control [14,18,19]. The reflection coefficient method is numerically fast
and stable to generate stable polynomials [19] and it gives a simple and efficient
approach to construct fixed-structure stabilizing controllers [18].

The aim of the paper is to find less conservative inner approximations of the
stability domain by polytopes, starting from different sets of reflection vectors,
generated by simple stable polynomials. The volumes of these stable polytopes
are calculated in order to compare the approximation quality.

The paper is organized as follows. First, stable reflection vector polytopes are
defined and their volume is investigated. Second, stable polytopes of two reflection
vector sets are defined, and in the last section the volumes of these stable polytopes
are calculated.

2. STABLE REFLECTION VECTOR POLYTOPES

Let an(z) be a monic polynomial of degree n with real coefficients ai ∈ R,
i = 0, ..., n− 1

an(z) = zn + ... + a1z + a0.

The reverse-order polynomial an∗(z) of an(z) is defined by [15]

an∗(z) = a0z
n + ... + an−1z + 1.

The reflection coefficients ki , i = 1, ..., n can be obtained from an(z) by using
backward Levinson’s recursion [20]

zai−1(z) =
1

1− k2
i

[ai(z) + kia
i∗(z)], (1)

where ki = −ai
0 (ai

0 denotes the last coefficient of an ith-degree polynomial ai(z)).
From Eq. (1) the forward recursion can be obtained

ai(z) = zai−1(z)− kia
(i−1)∗(z). (2)

In the following, the index of the degree will be omitted for the sake of
readability, i.e., an(z) = a(z).

The stability criterion via reflection coefficient is as follows [15]: a polynomial
a(z) has all its roots inside the unit disk if and only if |ki| < 1, i = 1, ..., n.

The reflection vectors of a Schur stable monic polynomial a(z) are defined as
the end points of stable line segments Ai(±1) = conv{a|ki = ±1} [9]

vi(±1) = (a|ki = ±1), i = 1, ..., n,
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where conv{a|ki = ±1} denotes the convex hull, obtained by varying the
reflection coefficient ki between−1 and 1 while all the other reflection coefficients
are fixed.

The following assertions hold:
1) every Schur polynomial a(z) has 2n reflection vectors v+

i (a) and v−i (a),
i = 1, ..., n;

2) all the reflection vectors of a Schur polynomial a(z) lie on the stability boundary
(ki(v) = ±1, kj(v) ∈ (−1, 1), j = 1, ..., n; j 6= i);

3) the line segments between reflection vectors v+
i (a) and v−i (a) of a Schur

polynomial a(z) are stable.
The following Lemma defines a family of stable polynomials such that a

polytope, generated by the reflection vectors of these polynomials, is stable [9].

Lemma. Let the reflection coefficients of a polynomial a(z) be k1 ∈ (−1, 1) and
k2 = ... = kn = 0. Then the innerpoints of the polytope P(a), generated by the
reflection vectors of the polynomial a(z)

P(a) = conv{v±i (a), i = 1, ..., n}, (3)

are Schur stable.

Indeed, if k = [ k1 0 ... 0 ] for the generating polynomial a(z) then
the reflection vectors (RV) v±i (a) in n-dimensional coefficient space are presented
as the rows of the following matrix:

P (a) =




v−1 (a)
v+
1 (a)

v−2 (a)
v+
2 (a)

v−3 (a)
v+
3 (a)
...

v−n (a)
v+
n (a)




=




1 0 ... ... ... ... ... 0
−1 0 ... ... ... ... ... 0
−2k1 1 0 ... ... ... ... 0

0 −1 0 ... ... ... ... 0
−k1 −k1 1 0 ... ... ... 0
−k1 k1 −1 0 ... ... ... 0
... ... ... ... ... ... ... ...
−k1 0 ... ... ... 0 −k1 1
−k1 0 ... ... ... 0 k1 −1




. (4)

Here RV for i > 2 can be grouped in pairs of the form
v±i (a) = [−k1 0 ... 0 ±k1 ±1 0 ... 0] . The RV created by positive
ki = 1 vector will be called a “positive RV on level i”

v+
i (a) = [−k1 0 ... 0 k1 −1 0 ... 0],

while the RV formed by ki = −1 will be called a “negative RV on level i”

v−i (a) = [−k1 0 ... 0 −k1 1 0 ... 0].

Now let us investigate the volume of stable polytopes P(k), generated by the
rows of the matrix P (a) for k1 ∈ (−1, 1) and n ≥ 2.
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Theorem 1. The volume of a reflection vector polytopeP(a) ∈ Rn of a polynomial
a(z), generated by reflection coefficients k = [k1 0 ... 0] , is fixed for
k1 ∈ (−1, 1) by the dimension n:

V (P(a)) =
2n

n!
. (5)

Proof. Any polytope P in n-dimensional space can be decomposed into a number
of simplexes with (n + 1) vertices vi, i = 1, ..., n in each of them and a single
common vertex v0 ∈ P for all the simplexes. The volume of a simplex S is [21]

V (S) =
|det(v1 − v0; v2 − v0; ...; vn − v0)|

n!
, (6)

where S = [v0 v1 ... vn]T denotes a matrix of n + 1 vertices (row vectors)
v0, ..., vn ∈ Rn of a simplex.

The volume of a polytope is then

V (P ) =
s∑∑∑

j=1

V (Sj),

where s is the number of simplexes in the polytope.
For an arbitrary RV polytope P(a) (4) the origin is an inner point of the

polytope P(a), 0 ∈ P(a). So we can choose origin as the common vertex for all
the decoupling simplexes Sj , v0 = [0 0 ... 0] ∈ Sj , j = 1, ...s. According
to the definition of reflection vectors and the polytope decomposition conditions,
all the other vertices v1, ..., vn of a decoupling simplex can not be on the same level
i (4).

As there are n levels in a RV polytope, then each simplex will include one
vertex of every level of P(a), i.e. v1 = [v−1 , v+

1 ], v2 = [v−2 , v+
2 ], ..., vn = [v−n , v+

n ].
Therefore, the total number of simplexes in the polytope is s = 2n.

All the decoupling simplexes Sj , j = 1, ...s, have the structure of a lower
triangular matrix

Sj =




±1 0 ... ... ... 0
−k1 ± k1 ∓1 0 ... ... 0

... ... ... ... ... ...
−k1 ... ±k1 ∓1 ... 0
... ... ... ... ... ...
−k1 0 ... 0 ±k1 ∓1




and so the volume of a simplex is according to Eq. (6)

V (Sj) =
1
n!

, j = 1, ..., s.
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As the total number of simplexes in a RV polytope is s = 2n then the volume
of an arbitrary RV polytope (5) is

V (P(a)) =
s∑∑∑

j=1

V (Sj) =
2n

n!
.

It proves the Theorem. 2

Example. Let us consider second order polynomials n = 2. Then the stability
domain in the polynomial coefficients space a ∈ R2 is given by the triangle
(F,G,H) in Fig. 1. Let us choose according to Theorem 1 the reflection coef-
ficients k1 = 0.2 and k2 = 0. Then the generating polynomial a(z) = z2 − 0.2z
has 4 reflection vectors (points C,D,F,A in Fig. 1, respectively)

v+
1 (a) = [ −1 0 ],

v−1 (a) = [ 1 0 ],
v+
2 (a) = [ 0 −1 ],

v−2 (a) = [ −0.4 1 ].

The RV polytope P(a) (C,A,D,F) can be decoupled into four simplexes
(C,A,0), (A,D,0), (D,F,0) and (F,C,0). All of these four triangles have the
volume

V (Sj) =
1
2!

, i = 1, ..., s,

and the volume of the RV polytope (C,A,D,F) is

V (P(a)) =
4∑∑∑

i=1

V (Sj) =
22

2!
= 2.

-
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Fig. 1. Polytopes of reflection vectors.
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To illustrate the effect of the choice of reflection coefficients of the generating
polynomial a(z) we have solved the same task with k1 = −0.8. Then the RV
polytope P(a) is the quadrangle (C,B,D,F) with decoupling triangles (C,B,0),
(B,D,0), (D,F,0), (F,C,0) and the volume

V (CBDF) = V (CADF) = 2.

3. STABILITY OF THE POLYTOPE OF TWO REFLECTION
VECTOR SETS

Let us consider now the reflection vector polytopes P(a) and P(ã) of two
polynomials a(z) and ã(z) with reflection coefficients k = [ k1 0 ... 0 ]
and k̃ = [ k̃1 0 ... 0 ], respectively. By Lemma, both of them are stable
if k1 ∈ (−1, 1) and k̃1 ∈ (−1, 1). Then the union of reflection vector polytopes
P(a)

⋃P(ã) is also stable. Unfortunately, the union of polytopes is not a convex
set. That is why we are looking for a stable convex hull of the two sets of reflection
vectors.

Let us denote by P(a)
⊎P(ã) the polytope generated by the reflection vectors

v±i (a) and v±i (ã) , i = 1, ..., n of two polynomials a(z) and ã(z)

P(a)
⊎
P(ã) = conv{v±i (a), v±i (ã), i = 1, ..., n},

and call it the polytope of two reflection vector sets. In this section we study the
stability of the polytopesP(a)

⊎P(ã) starting from a single stable reflection vector
polytope P(a) with k1 ∈ (−1, 1) , k̃1 = k1 and increasing k̃1 > k1 as much as
possible.

The following theorem gives us a useful tool for generating stable polytopes of
two RV sets with maximal volume.

Theorem 2. If the polytope of reflection vector sets P(a)
⊎P(ã) is stable and

−1 < k1 < k̄1 < k̃1 < 1, then the polytope of reflection vector sets P(a)
⊎P(ā)

is stable.

Proof. By Lemma all the three of reflection vector polytopes P(a), P(ã) and P(ā)
are stable. In order to prove the Theorem via Edge Theorem [22] we have to prove
that all the edges between all the vertices of the polytopesP(a) andP(ā) are stable.

Let us consider now an edge Aij

k,k̄
(±1) = conv{v±i (a), v±j (ā)} between

arbitrary vertices v±i (a) and v±j (ā) , i, j = 1, ..., n of reflection vector polytopes
P(a) and P(ā), respectively.

It is easy to see that the line segment Aij

k,k̄
(±1) is a subset of the triangle

conv{v±i (a), v±j (a), v±j (ã)}

Aij

k,k̄
(±1) ⊂ conv{v±i (a), v±j (a), v±j (ã)}.
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Fig. 2. The dependence of the difference |k̃max
1 − k1| and the volume V (P(a)

⊎P(ãmax))
from the value of k1.

The edge conv{v±i (a), v±j (a)} of this triangle is stable as an edge of the
stable reflection vector polytope P(a). The edges conv{v±i (a), v±j (ã)} and
conv{v±j (a), v±j (ã)} of this triangle are stable by assumption as the edges
of the stable polytope of reflection vector sets P(a)

⊎P(ã). Thus, all the
three edges of the triangle conv{v±i (a), v±j (a), v±j (ã)} are stable. Therefore
the triangle conv{v±i (a), v±j (a), v±j (ã)} is stable and the edge Aij

k,k̄
(±1) =

conv{v±i (a), v±j (ā)} is stable. It proves the Theorem. 2

Remark 1. In fact, it has been proven that the polytope of reflection vector sets
P(a)

⊎P(ā) is a subset of the polytope of reflection vector sets P(a)
⊎P(ã), if

k1 < k̄1 < k̃1.

Remark 2. For fixed k1 the volume of the polytope of reflection vector sets
P(a)

⊎P(ã) increases monotonically by increasing the difference |k̃1 − k1| .

Our aim is to find the maximal values k̃max
1 so that the polytope of reflection

vector sets P(a(k1))
⊎P(ã(k̃max

1 )) is stable.
For n = 2, obviously, k̃max

1 = 1 for arbitrary k1, k1 ∈ (−1, 1).
For n ≥ 3 the maximal values k̃max

1 can be easily found according to
Theorem 2 by the bisection method. In Fig. 2a the results for n = 3, ..., 6 are
presented.

4. VOLUME OF THE STABLE POLYTOPE OF TWO
REFLECTION VECTOR SETS

The volume of the polytope of two reflection vector sets can be analytically
found only for low order polynomials.
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For n = 2, using triangulation method [20], the polytope P(a)
⊎P(ã) of two

RV sets can be split into five simplexes

S1 = [v0, v
−
1 (a), v−2 (a)],

S2 = [v0, v
−
1 (a), v+

2 (a)],

S3 = [v0, v
+
1 (a), v−2 (ã)],

S4 = [v0, v
+
1 (a), v+

2 (a)],

S5 = [v0, v
−
2 (a), v−2 (ã)].

The first 4 simplexes have the vertices (RV) on different levels, and therefore
their volume is fixed

V (Sj) =
1
n!

=
1
2
, j = 1, ..., 4.

The last simplex has the vertices (RV) on the same level and the volume of it
depends on the difference (k̃1 − k1)

V (S5) =
2(k̃1 − k1)

2!
.

So the total volume of P(a)
⊎P(ã) for n = 2 is

V (P(a)
⊎
P(ã) =

5∑

j=1

V (Sj) =
2(k̃1 − k1) + 4

2
.

In Fig. 1 the polytopeP(a)
⊎P(ã) of two RV sets with generating polynomials

a(z) = z2 − 0.2z and ã(z) = z2 + 0.8z is presented by the pentagon
(C,A,B,D,F), which has considerably greater volume than the quadrangles
(C,A,D,F) or (C,B,D,F). The maximal volume of the stable polytope
P(a)

⊎P(ã) will be obtained if (k̃1 − k1) is maximal, i.e. k1 = −1 and k̃1 = 1.
Then the polytope P(a)

⊎P(ã) covers the stability domain for the second order
systems (the triangle (F,G,H)) and the volume V (P(a)

⊎P(ã)) = 4.
For n = 3 and 0 ≤ k1 ≤ k̃1 ≤ 1 the following formula can be obtained via

triangulation method by decoupling polytopes of the two RV setsP(a)
⊎P(ã) into

simplexes with origin as the common vertex:

V (P(a)
⊎
P(ã)) =

8 + (k̃1 − k1)(2k̃1 + 8)
3!

.

For n > 3 we calculated the volume V (P(a)
⊎P(ã)) by direct search. The

first problem is to select the best value of k1 ∈ (−1, 1) to start from. Once k1

is known, k̃max
1 should be chosen such that |k̃max

1 − k1| is maximal, provided the
stability conditions for the polytope P(a)

⊎P(ãmax) are met as well. According
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to Theorem 2 we can use the bisection method for calculations of the maximal
value k̃max

1 .
The resulting graphs of V (P(a(k1))

⊎P(ã(k̃max))) for different fixed
k1 ∈ (−1, 1) and n = 3, ..., 6 are shown in Fig. 2b.

The peaks in the graphs of Fig. 2 clearly indicate that the volume of the
polytope of two RV sets reaches maximum when the difference |k̃1 − k1|
is maximal. Therefore the bisection method can be used for maximizing
V (P(a(k1))

⊎P(ã(k̃max
1 ))).

In order to compare the efficiency of the proposed method with the single
reflection vector polytope, the volume of stable polytopes of different reflection
vector sets for a(z) with reflection coefficients k1 ∈ (−1, 1), k2 = ... = kn = 0,
are calculated [23] and presented in the second and third columns of Table 1. The
fixed volume of RV polytopes for a single generating polynomial a(z) is calculated
by Eq. (5) and presented in the second column of Table 1. The maximal volume of
stable polytopes of two RV sets is presented in the third column.

One can see that the maximal volumes of two RV sets are considerably greater
than the volumes of RV polytopes for a single generating polynomial.

It is interesting to mention that the Schur invariant transformation, introduced
in [12], can be used for the above stable polytopes of reflection vector sets in order
to look for stable polytopes with a greater volume. The results of [12] for a single
generating polynomial are represented in the third column of Table 1. The fourth
column shows the outcomes of the same method, applied to stable polytopes of two
RV sets.

In the last column of Table 1, the volume of stable ellipsoids, derived via
optimization over linear matrix inequalities [5] (case a), are presented.

The calculation times of different approaches were compared. All calculation
tests were performed using Intel Core 2 Duo with 4GB RAM in Windows Vista
environment. The finding of the largest volume polytope V (P(a(k1))) polytope for
n = 3 takes 0.0001 s CPU time, the largest volume of V (P(a(k1))

⊎P(ã(k̃max
1 )))

was found in 7.9560 s (with the accuracy of k̃max
1 equal to 0.0001) and the ellipsoid
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using LMI method [5] (case a) was built in 0.1406 s. With higher order systems,
however, the results are slightly different: for n = 7 the calculation time for simple
V (P(a(k1))) is 0.0156 s, for V (P(a(k1))

⊎P(ã(k̃max
1 ))) the calculation time is

59.4990 s and the ellipsoid calculation time is 150.0886 s.

5. CONCLUSIONS

Stable polytopes of different reflection vector sets are defined starting from the
sufficient stability condition via reflection coefficients of polynomials [9] and the
volume of these stable polytopes is calculated.

The volume of all stable reflection vector polytopes of a single polynomial,
generated by reflection coefficients k = [k1 0 ... 0], is fixed for the fixed
dimension n.

The volume of the polytope V (P(k1)
⊎P(k̃max

1 )) of two reflection vector sets
reaches maximum when the difference |k̃1 − k1| is maximal. The volume of stable
polytopes of two reflection vector sets is considerably greater than the volume of
reflection vector polytopes of a single polynomial. That is why the stable polytopes
of two reflection vector sets can be useful for robust control purposes [14,18].
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Diskreetaja süsteemide stabiilsuspiirkonna
lähendid peegeldusvektorite polütoopide kaudu

Sergei Avanessov ja Ülo Nurges

Lähtudes diskreetaja süsteemide stabiilsustingimusest karakteristliku polü-
noomi peegelduskoefitsientide ruumis, on leitud stabiilsed hulktahukad (polütoo-
bid) karakteristliku polünoomi kordajate ruumis. On leitud piisavad stabiilsustingi-
mused ühe ja mitme lähtepolünoomi korral ning vastavad stabiilsuspiirkonna lähen-
did peegeldusvektorite polütoopide kaudu. On arvutatud stabiilsete polütoopide
ruumalad ja leitud, et mitme lähtepolünoomi puhul on stabiilse polütoobi ruumala
oluliselt suurem kui ainult ühe lähtepolünoomi korral.
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