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Exploring vibrations of cracked beams by the
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Abstract. Free and forced vibrations of cracked Euler–Bernoulli beams are analysed by the
Haar wavelet method. Stiffness reduction for open V-shaped edge cracks is calculated. To
demonstrate the efficiency of the proposed method, three problems about bending and vibration
of cantilever beams are solved. The obtained results are compared with available data of other
authors.

Key words: Euler–Bernoulli beams, free and forced vibrations, cracks, Haar wavelet method.

1. INTRODUCTION

Cracks, occurring in structural elements, may significantly change the
behaviour of the whole structure and therefore the development of reliable crack
models has been the objective of many investigations. Due to the great number of
published papers we cite here only some of them, which are nearer to the topic of
the present paper. More complete analysis can be found in overviews, from which
we note here [1,2].

There are different possibilities for crack modelling. The conventional approach
is to divide the beam-type structure into two parts that are pinned at the
crack location and the crack is simulated by a massless torsional spring [3−8].
Continuity of deflection, bending moment and shear force is imposed, the slope
is discontinuous at the crack section x = ξ and we have

w′(ξ + 0)− w′(ξ − 0) = Cw′′(ξ). (1)

Here w stands for deflection of the beam, C denotes the flexibility of the spring; it is
a function of the crack depth and beam height. Different formulas for its calculation
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are proposed [4,7−9]. This approach is a simplification of crack dynamics since the
crack size and structure are not involved directly.

More exact solutions can be obtained by applying two- or three-dimensional
finite element meshes. To avoid large errors in calculation, a very fine mesh is
needed; this requires a large computational effort. To enlighten the computational
burden, continuous crack models have been introduced. Evidently, here the first
paper belongs to Christides and Barr [10] from 1984. A V-shaped crack model was
proposed by Sinha et al. [11]. Approximation of this model by exponential function
is given in [12], where the effect of the stress concentration in the vicinity of the
cracked region was estimated by the so-called crack disturbance function.

In most papers open cracks are considered. In fact, cracks can open and
close in time depending on the loading conditions and vibration amplitude
(breathening cracks); such cracks were treated in [13−16]. In some cases closed
form solutions for damaged beams are obtained. Making use of the theory of
the generalized functions (distributions) it is possible to integrate the equations
of motion analytically and in this way to get exact solutions for the cracked
beams [16−21].

For analysing the beam structures with singularities, a great popularity have
obtained the wavelet-based methods, since they are very accurate in detecting
the localized abnormalities. First papers about this topic appeared in 90-es, an
overview of them can be found in [22]. In most papers the wavelet methods were
applied for the detection and identification of cracks. Here for the given signal the
wavelet transforms are accomplished at different levels of resolution (scales). If the
resolution is fine enough, transient vibrations become evident in some region; this
allows us to detect the crack and its location. This approach was applied in several
papers from which we cite here [22−26].

Among the wavelet families, special attention deserve the Haar wavelets.
They are made up of pairs of piecewise constant functions and therefore are
mathematically the simplest orthogonal wavelets with a compact support. They
can be integrated analytically arbitrary times. A drawback of these wavelets is the
fact that they are not continuous and therefore cannot be differentiated at the points
of discontinuity. To overcome this difficulty, we expand into the Haar wavelet series
not the function itself but its highest derivative appearing in the differential equation
to be solved. The lower derivatives and the function itself are found by integration.
This approach has turned out to be very successful for solving differential and
integral equations [27−30].

The main aim of the present paper is to demonstrate the efficiency of the Haar
wavelet method for exploring transverse vibrations of cracked Euler–Bernoulli
beams. The paper is organized as follows. In Section 2 the governing equations
of the problem are presented. Some versions of the crack models are discussed in
Section 3. Integrals of the Haar wavelets are presented in Section 4. Bending of
beams under statical loading is examined in Section 5. In Sections 6 and 7 free
and forced vibrations of beams with singularities are analysed.
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2. GOVERNING EQUATIONS

Consider an Euler–Bernoulli beam of rectangular cross-section, which carries
a concentrated load F̃ at the cross-section x̃ = x̃∗. The equations of motion are

∂M̃

∂x̃
= −Q̃, M̃ = −EI(x̃)

∂2w̃

∂x̃2
, I(x̃) = (1/12)bh(x̃)3,

∂Q̃

∂x̃
= −µ

∂2w̃

∂t2
+ F̃ δ(x̃− x̃∗),

(2)

where µ = bh(x̃)ρ. Here E is the Young modulus, I(x̃) is the moment of
inertia of the cross-section, M̃ and Q̃ denote the bending moment and shear force,
respectively. The beam’s length is L, dimensions of its cross-section are b and
h(x̃), ρ denotes the density of the beam material, w̃ means the deflection, and
δ(x̃− x̃∗) is the Dirac delta function.

In the following only motion with an harmonic load F̃ = F exp(iωt) is con-
sidered. By introducing the symbols

w = w̃ exp(−iωt), M = M̃ exp(−iωt), Q = Q̃ exp(−iωt), x = x̃/L (3)

we find (primes denote differentiation with regard to x)

M ′ = −LQ, M = −EI(x)w′′/L2, Q′ = µLω2w + Fδ(x− x∗). (4)

Equations (4) can be rewritten in the form

(G(x)w′′)′′ = Aγω2w + BFδ(x− x∗). (5)

Here the following symbols are introduced

γ(x) = h(x)/h(0), G(x) = γ(x)3, h0 = h(0), (6)

A =
12ρL4

Eh0
2 , B =

12
Eb

(
L

h0

)3

. (7)

Integrating (5) twice, we find

Gw′′ = Ω
∫ x

0
dx

∫ x

0
γwdx = BF (x− x∗)U(x− x∗) + C1x + C2. (8)

Here Ω = Aω2 and U denotes the Heaviside function (U = 0 for x < x∗ and
U = 1 for x ≥ x∗). The integration constants C1 and C2 are calculated from the
boundary conditions for M and Q. In the following only the case of a cantilever
beam, for which M(1) = Q(1) = 0, is considered. Besides, it is assumed that the
load F acts in the end section x = 1. For this case the integro-differential equation
(8) obtains the form

Gw′′ − Ω
[
−

∫ 1

x
dx

∫ x

0
γwdx + (1− x)

∫ 1

0
γwdx

]
= BF (1− x). (9)
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3. MODELLING CRACKS

There are different ways for crack modelling. In this Section three of them
are considered. To demonstrate the benefits and shortcomings of these models the
following simple problem is solved. We consider pure static bending of a cantilever
beam, which has a crack at x = ξ. The crack has uniform depth d across the width
of the beam and is fully open. The relative depth of the crack is β = d/h. In view
of (4) we have

G(x)W ′′ = 2, where W = −2EI (0 )w/(ML2 ). (10)

Here the symbol G(x) denotes the non-dimensional flexural rigidity of the beam.
For Eq. (10) closed form solutions can be found.

3.1. First model [21]

According to the conventional approach (1) we assume that the crack is
concentrated in a single section of the beam and assume

G(x) = 1− Γδ(x− ξ). (11)

In this section it is assumed that the cracks are modelled as notches (saw-cuts). In
such a case the parameter Γ is related with the relative depth of the crack β by the
formula

Γ = 1−G(ξ) = 1− (1− β)3. (12)

Replacing (11) into (10), we obtain

[1− Γδ(x− ξ)]W ′′ = 2. (13)

Making use of the algebra of distributions, this result can be put into the
form [17]

W ′′ = 2
[
1 +

Γ
1− αΓ

δ(x− ξ)
]

. (14)

Here for evaluating the product of the two deltas, the following formula was
applied [17]:

δ(x− ξ)δ(x− ξ) = αδ(x− ξ), α = 2.013. (15)

By integrating this equation twice we find (the symbol U denotes the Heaviside
function)

W ′ = 2
[
(x +

Γ
1− αΓ

U(x− ξ)
]

,

W = x2 +
2Γ

1− αΓ
(x− ξ)U(x− ξ).

(16)
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This model has an essential shortcoming. According to (14), the inequality
1− αΓ > 0 holds, consequently Γ < 1/α and β < 0.205. So we see that this
model is applicable only for modelling cracks of small depth. It is shown in [21]
that Eqs (16) are equivalent with the results obtained for the beam model with an
internal torsional spring.

3.2. The second model

Cerri and Vestroni [31] proposed a crack model with constant stiffness reduction
due to a crack. This case can be realized if we present Γ by two Heaviside functions:

G = 1− ΓU(x− ξ + λ) + ΓU(x− ξ − λ). (17)

Here λ denotes the non-dimensional effective width of the crack. Making again use
of the algebra of distributions, we can put (17) into the form

W ′′ = 2 +
2Γ

1− Γ
[U(x− ξ + λ)− U(x− ξ − λ)], (18)

from which follows

W = x2 +
Γ

1− Γ
[
(x− ξ + λ)2U(x− ξ + λ)− (x− ξ − λ)2U(x− ξ − λ)

]
.

(19)

3.3. The third model

V-shaped cracks were considered in [10]. In this case we have

G(x) =





1− (Γ/λ)(x− ξ + λ) for ξ − λ < x ≤ ξ,

1 + (Γ/λ)(x− ξ − λ) for ξ < x ≤ x + ξ,

1 elsewhere.





. (20)

Since analytic integration of (13) is somewhat troublesome, we have carried
out this operation numerically. For the Models II–III the parameter λ, determining
the effective width in the cracked zone, must be known. In the case of saw-cut type
cracks it is prescribed. As to fatigue cracks, here different formulas are proposed.
Most of them can be written in the form

λ = K(β)h0/L. (21)

According to Christides and Barr [10], a good approximation gives K(β) =
1.5. Bilello [32] recommended to take K(β) = β/0.9. A more complicated
formula belongs to Bovsunovsky and Matveev [14], which has the form

K(β) =
0.3675(1− β)
1− (1− β)3

[(1− β)6 − 3(1− β)2 + 2]. (22)
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The calculation of λ can be avoided if we approximate (20) by an expression
involving an exponential function [11]:

G(x) =
1− Γ

1− Γ + Γexp[−2α|x− ξ|L/h]
. (23)

The value α = 0.667 is estimated from experimental data.
Computer simulation was carried out for ξ = 0.5 and L/h = 20. Slopes and

deflections versus coordinate x for the first two models and for β = 0.15 are plotted
in Figs 1 and 2. Besides the deflections at the beam end, WF = W (1) were
calculated. The results for all the three models were WFI = 2.73, WFII = 1.010,
WFIII = 1.005. For β= 0.5 we found WFII = 1.117, WFIII = 1.117 (the first
model is not applicable).

For a V-shaped crack, deflections at the beam end x = 1 were calculated for
alternative values of the parameter λ. The results are presented in Table 1.
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Fig. 1. Slope and deflection of the cracked beam (model I).
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Fig. 2. Slope and deflection of the cracked beam (model II).
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Table 1. Deflections at the beam end for different values of L/h and β

L/h β W1 W2 W3 W4

20 0.25 1.013 1.024 1.011 1.103
0.40 1.042 1.143 1.025 1.272
0.50 1.074 1.206 1.033 1.525

50 0.25 1.006 1.037 1.005 1.051
0.40 1.020 1.071 1.011 1.136
0.50 1.025 1.102 1.014 1.262

Here for calculating W1, the formula K = β/0.9 was applied, in the case of
W2 if was assumed K = 1.5. For calculating W3 and W4, the formulas (22) and
(23) were used, respectively.

It follows from Table 1 that the gap between these solutions may be quite
significant. Unfortunately it is not possible to apply for λ a universal criterion since
the reliability of one or other criterion depends upon the character of the problem
to be solved. Therefore, making use of the available experimental data or carrying
out some test calculations with the aid of a more exact method (e.g., by FEM) the
validity of one or another method should be cleared out, after that the main part of
computations are carried out by the wavelet method. This approach demands some
complementary work, but this is compensated by the simplicity of the Haar wavelet
solutions.

4. THE HAAR WAVELET METHOD

Let us consider the interval x ∈ [A,B], where A and B are given constants.
We shall define the quantity M = 2J , where J is the maximal level of resolution.
The interval [A,B] is divided into 2M subintervals of equal length; the length of
each subinterval is ∆x = (B−A)/(2M). Next, two parameters are introduced: the
dilatation parameter j = 0, 1, ..., J and the translation parameter k = 0, 1, ..., m−1
(here the notation m = 2j is introduced). The wavelet number i is defined as
i = m + k + 1. The i-th Haar wavelet is defined as (Fig. 3)

hi(x) =





1 for x ∈ [ξ1(i), ξ2(i)] ,

−1 for x ∈ [ξ2(i), ξ3(i)] ,

0 elsewhere ,

(24)

where

ξ1(i) = A + 2kµ∆x , ξ2(i) = A + (2k + 1)µ∆x ,

ξ3(i) = A + 2(k + 1)µ∆x , µ = M/m .
(25)
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Fig. 3. Haar wavelet for J = 2, i = 7.

The case i = 1 corresponds to the scaling function h1(x) = 1 for x ∈ [A,B],
and h1(x) = 0 elsewhere.

If we want to solve a n-th order ODE, we need the integrals

pν,i(x) =

x∫

A

x∫

A

...

x∫

A︸ ︷︷ ︸
ν−times

hi(t)dtν =
1

(ν − 1)!

x∫

A

(x− t)ν−1hi(t)dt,

ν = 1, 2, ..., n , i = 1, 2, ..., 2M.

(26)

The case ν = 0 corresponds to the function hi(t). Taking account of [28−30],
these integrals can be calculated analytically; by doing it we obtain

pα,i(x) =





0
for x < ξ1(i) ,

1
α!

[x− ξ1(i)]α

for x ∈ [ξ1(i), ξ2(i)] ,
1
α!
{[x− ξ1(i)]α − 2[x− ξ2(i)]α}

for x ∈ [ξ2(i), ξ3(i)] ,
1
α!
{[x− ξ1(i)]α − 2[x− ξ2(i)]α + [x− ξ3(i)]α]}

for x > ξ3(i) .





. (27)

These formulas hold for i > 1. In the case i = 1 we have ξ1 = A, ξ2 = ξ3 = B
and

pα,1(x) =
1
α!

(x−A)α . (28)

In this paper the governing equation (9) is solved by the collocation method.
The collocation points are (the symbol x(l) denotes the grid points)

xc(l) = 0.5[x(l − 1) + x(l)], l = 1, 2...2M. (29)
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Let us introduce the vector of the wavelet coefficients a = (ai), i =
1, 2, . . . , 2M and define the Haar matrices

H(i, l) = hi[xc(l)], Pα(i, l) = pα,i[xc(l)],

i, l = 1, 2, ...2M, α = 1, 2, 3... .
(30)

Solution of Eq. (9) is sought in the matrix form w′′ = aH . By integrating this
equation and taking into account the boundary conditions, we find

w′ = aP1, w = aP2. (31)

Next we introduce notations

I1i(x) =
∫ x

0
γ(x)p2i(x)dx, I2i(x) =

∫ x

0
dx

∫ x

0
γ(x)p2i(x)dx. (32)

These results are introduced into Eq. (9); the outcome can be put into the matrix
form as

aR = BF (E − xc), (33)

where

R(i, l) = G(l)H(i, l) + Ω[E(l)− xc(l)]I1i(1)− I2i(1) + I2i[xc(l)],

i, l = 1, 2, ..., 2M.
(34)

Here E is a 2M unit vector. The wavelet coefficients ai are calculated by solving
the system (33), the slope and deflection are computed from Eq. (31).

To demonstrate the efficiency of the proposed method, in the following sections
three problems are solved.

5. BENDING OF MULTI-CRACKED BEAMS

In the paper [8] by Skrinar the following problem was solved by the finite
element method. A cantilever beam of length L = 8 m and height h= 0.18 m carries
a concentrated load F = 10 kN at the beam’s end. The Young’s modulus is E =
30 GPa. At the distances 1, 4 and 6 m, three cracks are present. The depths of all
cracks were taken to be 0.09 m.

Let us solve this problem by the Haar wavelet method. We start from Eqs (33)–
(34) by assuming Ω = 0. In the present case B = 0.3512. The dimensionless crack
locations and depths are ξ1= 0.125, ξ2 = 0.50, ξ3 = 0.75, β1 = β2 = β3 = 0.5. V-
shaped cracks are assumed. The function G(x) is calculated according to Eq. (20).
For the level of resolution, the value J = 7 was taken. Computer simulation was
carried out for λ = (β/0.9)(h/L) and for λ = 1.5h/L. Deflection at the beam
end was found to be 12.71 and 15.40, respectively (Skrinar got the value 14.42).
To improve these solutions, we demand that the angle at the crack tip should be the
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Table 2. Deflections of the beam end (in cm)

First crack Second crack Third crack Under the force

Skrinar 0.263 4.483 9.097 14.417
Wavelet 0.219 4.430 8.980 14.223

same for the functions γ = γ(x) and G = G(x). If we denote by Λ the effective
crack width for G = G(x), then λ/β = Λ/Γ and Λ = Γλ/β = Γh/(0.9L).

We have replaced in Eq. (20) λ → Λ and executed the calculations once more.
The results are presented in Table 2.

It follows from Table 2 that the accordance of both solutions may be regarded as
satisfactory. The Skrinar’s computation model consisted of 14,400 2D eight noded
finite elements and about 90,000 linear equations were solved. Our method is much
simpler, since for J = 7 only 256 equations had to be solved.

6. FREE VIBRATIONS OF BEAMS WITH SINGULARITIES

In the case of free vibrations we take F = 0 in Eq. (33). This system
is now linear and has non-trivial solutions only if the determinant is 0. This
requirement is fulfilled only for some discrete values of Ω = Ων , ν = 1, 2, 3...
The eigenfrequencies of the beam are ων =

√
Ων/A, where the coefficient A

is calculated from Eq. (7). If we want to obtain the deflection modes then we
must fix the deflection at some point, assuming, e.g., w(1) = 1 and adding this
requirement to the system (33). The augmented system is non-homogeneous and
can be solved in the ordinary way. If cracks appear, the non-dimensional rigidity
in the damaged zone is calculated according to Eq. (20). Following Eq. (11), we
assume that cracks do not change the beam mass; consequently, they do not have
an effect in calculation of the integrals I1i(x) and I2i(x); this circumstance greatly
simplifies the solution. Essential is the choice of the parameter λ, which determines
the extent of the cracked zone. Our computations have shown that the Bilello
criterion gives for eigenfrequencies mostly overestimated, and the Christides–Barr
criterion – underestimated values. By this reason we have made use of the estimate
λ = Γh/(0.9L), which was discussed in Section 5; since β ≤ Γ ≤ 1, this criterion
gives for λ intermediate values to be compared with the other two criteria.

At first, vibrations of a uniform beam with a single crack at x = ξ is
considered. Since γ(x) ≡ 1, evaluation of the integrals (34) gives I1i(x) = p3i(x),
I2i(x) = p4i(x). Equation (33) obtains the form

R(i, l) = G(l)H(i, l) + Ω{[1− xc(l)]p3,i(1)− p4,i(1) + P4(i, l)}. (35)

To start, the uncracked beam is considered. Carrying out computations for
J = 6, we found Ω(0)

1 = 12.3627, Ω(0)
2 = 485.48; the exact values are exactly the

67



same. It follows that the accuracy of the wavelet solution is very high already for
the level J = 6.

Free vibrations of a cantilever beam with a crack location x = 0.275 were
considered by Sinha et al. [11]. The relative crack depths β were 0.16, 0.32 and
0.48. The solution was obtained by using a FEM model with rotational springs
(16 elements with 34 degrees of freedom). Numerical results were checked with
the experimental data. Let us compare these data with our wavelet results. The
reduction of the frequency of vibrations due to the cracks is estimated by the
coefficient

∆ν =
√

Ων/Ω(0)
ν , ν = 1, 2, ... . (36)

Results of computation are shown in Table 3. The symbols ∆theor and
∆exp indicate the theoretical and experimental values taken from Table 2 of the
paper [11], ∆wav corresponds to the wavelet solution. Analysis of these data shows
that in comparison with the experiment our solution is not worse than the Sinha’s
FEM solution.

Free vibrations of a two-stepped beam with two cracks, supposed to belong to
different steps, were analysed by Zhang et al. [23]. The cracks were modelled
by springs, the cracks and the step divided the beam into four sub-beams; the
governing equations were solved by the method of transfer matrix. In the following
the solution, based on the Haar wavelet method, is presented. Let us assume that the
step is located at x = η, the locations of the cracks are ξ1 and ξ2, and their depths
are β1 and β2. The non-dimensional height of the beam γ(x) is now specified and
we can evaluate the integrals (32). By doing this we find

I1i(1) = γ1p3i(1)− (1− γ1)p3,i(η),

I2i(xl) = P4(i, l) + {−(1− γ1)[Pi(i, l)− p4,i(η)− p3,i(η)(xl − η)]}U(xl − η),
(37)

where U is the Heaviside function. The cracks are modelled according to Eq. (20).
The effective width of cracks is taken again in the form Λ = Γh/(0.9L); in
the case of a stepped beam, the parameter Γ is calculated from the formula
Γ = γ3 − (γ − β)3. Computer simulation was carried out for the Cases 3 and 8 of
the paper [23]. The results are shown in Figs 4 and 5 and in Table 4. In Table 4, the

Table 3. Reduction of eigenfrequencies of cracked beams, comparison of the results with [11]

Mode 1 Mode 2

β ∆theor ∆exp ∆wav ∆theor ∆exp ∆wav

0.16 0.987 1.000 0.995 0.997 0.998 0.992
0.32 0.974 0.969 0.980 0.993 0.997 0.997
0.48 0.962 0.950 0.956 0.990 0.991 0.994
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Fig. 4. Curvature, deflection and wavelet coefficients for Problem 3 from [23]; first mode.
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Fig. 5. Curvature, deflection and wavelet coefficients for Problem 3 from [23]; second mode.
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Table 4. Reduction of eigenfrequencies of cracked beams, comparison of the results with [23]

Case 3 Case 8

Mode ∆Zh ∆wav ∆Zh ∆wav

1 0.977 0.977 0.947 0.949
2 0.985 0.984 0.948 0.964

symbols ∆Zh correspond to the solutions of paper [23], the symbols ∆wav to our
wavelet solution. It follows from Table 4 that the accordance of these solutions is
very good for the first mode and somewhat worse in the case of the second mode.
With reference to Figs 4 and 5 we would like to turn attention to the fact that most
of the wavelet coefficients are zero; this is typical to the discrete wavelet methods
and to a great extent increases the speed of convergence.

The wavelet method is very convenient for treating stepped beams. According
to the conventional approach, the beam is divided into sub-beams between the
steps; governing equations are solved for each beam separately, satisfying the
continuity equations at each step. This procedure may turn to be very troublesome,
especially if the number of steps is more than two. The wavelet solution is much
more simple, since the beam is treated as a whole (not divided into sub-beams).

7. FORCED VIBRATIONS OF THE BEAM

Vibrations of cracked cantilever beams under a concentrated harmonic load
were discussed by Orhan et al. [9]. Single and double V-shaped cracks were
considered. For solution, the ANSYS 8.0 program was used, the beam was
discretized into 1520 elements with 2300 nodes. The beam and material parameters
were L = 0.5 m, b = 0.2 m, h = 0.029 m, E = 206.8 GPa, ρ = 7780 kg/m3. Now
let us solve the same problem by the wavelet method. For this again Eq. (5) must
be solved. The values of the coefficients in Eq. (7) are A = 3.420e-6, B = 1.487e-5.
Computer simulation was carried for two cases from [11]: 1) a single crack at ξ1

= 0.75, 2) two cracks at ξ1 = 0.5, ξ2 = 0.75. In both cases for the cracks depths
d the values 8, 20 and 24 mm were taken. The forcing frequency fr = ω/(2π)
is prescribed, the natural frequency is calculated as fn = (1/(2πL)

√
Ω/A. In the

case of the uncracked beam we have f0 = 605.18 (this is an exact value); the wavelet
solution for J = 7 gives 605.19, which practically coincides with the exact value.
In the case of damaged beams the crack model (20) is applied for λ = Γh/(0.9L.
The matrix R(i, l) can be calculated according to Eq. (35), taking into account the
formula Ω = Aω2. The wavelet coefficients (ai) are calculated by solving the
system (33). Slope and deflection are evaluated from Eq. (31).

First, let us calculate the end deflection W =| w(1) | as a function of the
forcing frequency fr. The result for undamaged beam is plotted in Fig. 6. It
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Fig. 6. Maximal deflection of the uncracked beam versus forcing frequency.

can be seen that here from a background of low intensity arises a sharp peak.
This is evidently the phenomenon of resonance. In the case of cracked beams
the resonance frequencies decrease. This a quite different result to be compared
with the paper [9], where the curves W = W (fr) had a broad specter and no sharp
resonance peaks appeared. Our solution seems to be logical, since no viscosity is
taken into account. In [9], the FEM was applied; perhaps by that some artificial or
hidden viscosity was introduced and due to it the signal was smeared out to some
region.

As to cracked beams, by increasing the cracks depth the resonance frequency
decreases. This effect is quite small in the case of single cracks (the same con-
clusion is made in [9]).In the case of two cracks, the computer simulation gave
(in parentheses are the values of the dominant peaks from [9]): fr = 95.2(96) for
d = 8 mm; fr = 88.3(88) for d = 20 mm and fr = 77.0(80) for d = 24 mm.

For some cases the curvature, slope and deflection versus beam coordinate and
also the wavelet coefficients were calculated. Single and double cracks with the
depth d = 24 mm were assumed. The cases fn = 300 (precritical stage) and
fn = 800 (postcritical stage) were considered. The results are plotted in Figs 7
to 10.

8. CONCLUSIONS

A new way for treating vibrations of cracked Euler–Bernoulli beams, based
on the Haar wavelets, is proposed. For testing the method, three problems are
solved and numerical results are compared with the data of other authors. The
main advantages of the Haar wavelet method are its mathematical simplicity
rapid convergence and good capability for treating singularities. A benefit of the
proposed method is also the fact that the necessary computations can be automated
to a great extent. For the most time-consuming operation – for calculating integrals
of the wavelet functions – universal subprograms can be put together. For solving
high-order systems of linear equations, the MATLAB matrix programs have proved
to be very useful. The main shortcoming of our method is the fact that at the pre-
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Fig. 7. Forced vibrations of the beam; single crack, precritical stage.
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Fig. 8. Forced vibrations of the beam; single crack, postcritical stage.
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Fig. 10. Forced vibrations of the beam; two cracks, postcritical stage.
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sent time we do not possess sufficiently exact methods for calculating the effective
crack’s width. By this reason the high accuracy of the wavelet method cannot be
utilized to the full extent. In this paper only cantilever beams were considered. This
is no drawback of the method – problems for other variants of boundary conditions
can be treated in a similar way.
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Praoga talade võnkumiste uurimine Haari
lainikute meetodil

Ülo Lepik

Töö koosneb kahest osast. Esimeses osas on leitud täpne lahend konsooltala
puhtpainde ülesandele kolme tüüpi pragude korral ja hinnatud saadud tulemusi.
Teises osas on rakendatud Haari lainikute meetodit mitmete elastsete talade painde
ja võnkumiste ülesannete lahendamiseks (tala paine staatilise üksikkoormuse
mõjul, konsooltala vabad ning sundvõnkumised). Saadud tulemusi on võrreldud
teistel meetoditel saadutega. Arvutustest nähtub, et Haari lainikute meetod kind-
lustab vajaliku täpsuse juba väikese arvu kollokatsioonipunktide puhul. Eriti efek-
tiivne on soovitatud meetod singulaarsuste (praod, astmetega talad jne) korral.
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