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Abstract. The Haar wavelet method is applied for solving different problems of buckling of
elastic beams. Solutions are given for the following problems: (i) beams with intermediate
supports, (ii) crack simulation, (iii) beams with variable cross-section, (iv) buckling and
vibrations of beams on an elastic foundation. Numerical results for seven test examples are
presented. It follows from the calculations that the accuracy of the results is high even in
the case of a small number of calculation points. In most cases the proposed method is
mathematically simpler in comparison with the conventional approaches.
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1. INTRODUCTION

The wavelet methods have proved to be very effective for solving problems
of mathematical calculus. In the last time these methods have attracted the
interest of researchers of structural mechanics and many papers in this field are
published. In most papers the Daubechies wavelets are applied. These wavelets are
orthogonal, sufficiently smooth and have a compact support. Their shortcoming is
that an explicit expression is lacking. This obstacle makes the differentiation and
integration of these wavelets very complicated. For evaluation of such integrals
the connection coefficients are introduced, but this complicates the course of the
solution to a great extent.

Among the wavelet families, which are defined by an analytical expression,
special attention deserve the Haar wavelets.They are made up of pairs of piecewise
constant functions and are mathematically the simplest among all the wavelet
families. A good feature of the Haar wavelets is the possibility to integrate them
analytically arbitrary times. The Haar wavelets are very effective for treating
singularities, since they can be interpreted as intermediate boundary conditions.
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From numerous papers on buckling and vibrations of elastic beams we cite
here only some, which are nearer to the topic of the present paper. Diaz et al. [1]
used a hybrid scheme of Daubechies wavelets and finite element method for getting
numerical solutions for Euler–Bernoulli beam. In the paper by Chen et al. [2] for
that purpose the B-spline wavelets were applied. In several papers the boundary
value problems have been considered. Glabisz [3] solved the multi-point boundary
value problem with the aid of the Walsh wavelet packet. The solution by Zhou and
Zhou [4] is based on Daubechies and Coiflet wavelets. Eliashakoff and Guede [5]
considered boundary conditions for an inhomogeneous Euler–Bernoulli beam. Free
vibrations of multispan beams with intermediate constraints were discussed by Lin
and Chang [6]. Multispan beams of variable thickness under static loads were
investigated by Xu and Zhou [7]. As to beams, resting on an elastic foundation,
we would like to cite here Ayvas and Özgan [8], Chen [9] and Eliashakoff [10].

In many papers, beam structures with cracks are analysed by the wavelet
methods. We refer here only to papers, in which the Haar wavelet method is
applied. Wang and Deng [11] considered cracked simply supported beams subjected
to a static point load. Quek et al. [12] applied for crack detecting Haar and Gabor
wavelets. Gentile and Messina [13] applied vibration data for detecting open cracks.
Multiresolution analysis for damage estimation in beam-like structures was applied
by Kim et al. in [14].

In this paper different problems of buckling and vibrations of elastic beams
are solved. The aim of the paper is mainly methodological – to demonstrate the
efficiency of the Haar method. With the purpose to estimate the accuracy of the
obtained results, computer simulation was carried out for the examples for which
the exact solution is known. Most of these examples are taken from the classical
text-book by Timoshenko [15].

The paper is organized as follows. In Section 2 formulas for calculating the
integrals of the Haar wavelets are presented. The method of solution is described
in Section 3. In the following sections solutions for some special problems are
presented. In Section 4 beams with intermediate rigid supports are considered. A
new approach for treating cracks in the beam is proposed in Section 5. Beams
with variable cross-section are analysed in Section 6. In Section 7 buckling and
vibrations of beams on an elastic foundation are discussed. In the last Section 8 the
results of the paper are summarized.

2. HAAR WAVELETS

To make the paper self-contained, we refer to some results, obtained in [16].
Consider the interval x ∈ [A,B], where A and B are given constants. We
shall define the quantity M = 2J , where J is the maximal level of resolution.
The interval [A,B] is divided into 2M subintervals of equal length; the length
of each subinterval is ∆x = (B − A)/(2M). Next, two other parameters are
introduced: the dilatation parameter j = 0, 1, . . . , J and the translation parameter
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k = 0, 1, . . . , m−1 (here the notation m = 2j is introduced). The wavelet number
i is identified as i = m + k + 1.

The i-th Haar wavelet is defined as

hi(x) =





1 for x ∈ [ξ1(i), ξ2(i)],

−1 for x ∈ [ξ2(i), ξ3(i)],

0 elsewhere,

(1)

ξ1(i) = A + 2kµ∆x, ξ2(i) = A + (2k + 1)µ∆x,

ξ3(i) = A + 2(k + 1)µ∆x, µ = M/m.
(2)

The case i = 1 corresponds to the scaling function: h1(x) = 1 for x ∈ [A,B]
and h1(x) = 0 elsewhere.

In the following we need the integrals

pα,i(x) =

x∫

A

x∫

A

. . .

x∫

A︸ ︷︷ ︸
α times

hi(t)dtα =
1

(α− 1)!

x∫

A

(x− t)α−1hi(t)dt,

α = 1, 2, . . . , n , i = 1, 2, . . . , 2M .

(3)

The case α = 0 corresponds to the function hi(t).
Taking account of Eq. (1), these integrals can be calculated analytically; by

doing it we obtain

pα,i(x) =





0
for x < ξ1(i),

1
α!

[x− ξ1(i)]α

for x ∈ [ξ1(i), ξ2(i)],
1
α!
{[x− ξ1(i)]α − 2[x− ξ2(i)]α}

for x ∈ [ξ2(i), ξ3(i)],
1
α!
{[x− ξ1(i)]α − 2[x− ξ2(i)]α + [x− ξ3(i)]α}

for x > ξ3(i).

(4)

These formulas hold for i > 1. In the case i = 1 we have ξ1 = A, ξ2 = ξ3 = B
and

pα,1(x) =
1
α!

(x−A)α. (5)

For solving boundary value problems we need the values pα,i(B), which can
be calculated from Eq. (4). In special cases, α = 1 or α = 2, we find

q1(i) = p1,i(B) =
{

B −A for i = 1,

0 for i 6= 1,
(6)
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and

q2(i) = p2,i(B) =





0.5(B −A)2 for i = 1,

0.25
(B −A)2

m2
for i 6= 1.

(7)

3. PROBLEM STATEMENT AND THE METHOD OF SOLUTION

Consider buckling of an elastic beam under axial compressive load P . If the
load obtains the critical value Pcr, the beam buckles. The deflection curve of the
buckled beam is determined from the governing equation

EI(x̃)d2w/dx̃2 = M(x̃), x̃ ∈ [0, L]. (8)

Here E is the Young modulus, I is the moment of inertia of the cross-section and M
denotes the bending moment at the cross-section x̃. In the following, two variants
of the boundary conditions are considered:
(i) beam with simply supported ends, here M = −Pw,
(ii) cantilever beam with clamped ends, M = P (δ − w), δ = w(L).

Let us change the variables

x = x̃/L, λ = PL2/EI(x̃). (9)

Now Eq. (6) obtains the form:
(i) for the simply supported beam

w′′ + λw = 0, w(0) = w(1) = 0, (10)

(ii) for the cantilever beam

w′′ + λw = λδ, w(0) = w′(0) = 0, w(1) = δ. (11)

Here and in the following primes denote differentiation with regard to x.
According to the Haar wavelet method, the solution of (10)–(11) is expressed

in the form

w′′(x) =
2M∑

i=1

aihi(x). (12)

Integrating this equation we obtain

w′(x) =
∑2M

i=1 aip1i(x) + C1,

w(x) =
∑2M

i=1 aip2i(x) + C1x + C2.
(13)

Here ai are the wavelet coefficients; the quantities hi, p1i, p2i are evaluated from
Eqs (1), (4), (5), respectively. The integration constants are calculated from the
boundary conditions, and we obtain
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(i) C1 = −∑2M
i=1 aiq2(i), C2 = 0 for the simply supported beam,

(ii) C1 = C2 = 0 for the cantilever beam.
All these results are substituted into Eqs (10)–(11) and the obtained differential

equation is satisfied in the collocation points. By doing this we get the system of
equations

2M∑

i=1

ai{H(i, l) + λ[P2(i, l) + β1Q(i, l)]} = β2F (l), l = 1, 2, . . . , 2M. (14)

Here the notations Q(i, l) = −q2(i)xl, F (l) = λδ were introduced. For a simply
supported beam we have β1 = 1, β2 = 0; for the cantilever beam β1 = 0, β2 = 1.
It is advantageous to put Eq. (14) into the matrix form

aR = β2F, (15)

where
R = H − λ(P2 + β1Q). (16)

The system (15) is linear and homogeneous with regard to the variables ai and
δ. For getting a non-trivial solution, the determinant of this system must be zero.
From this requirement the critical load parameter λcr is evaluated.

To obtain the deflection curve w = w(x), we must specify the deflection
in some cross-section x = x∗. According to Eq. (13) we get a complementary
equation

w(x∗) =
2M∑

i=1

aip2i(x∗) + C1x ∗+C2, (17)

which is incorporated into the system (15). The augmented system is now non-
homogeneous and has a non-trivial solution for ai and δ. The function w = w(x)
is calculated from Eq. (13).

4. BEAM ON INTERMEDIATE SUPPORTS

Consider an axially compressed beam with n rigid supports at the cross-
sections yα ∈ (0, 1), α = 1, 2, . . . , n. The conditions w(yα) = 0 can be interpreted
as intermediate boundary conditions for the system (15) and in view of Eq. (17) we
have

2M∑

i=1

aip2i(yα) + C1yα + C2 = 0, (18)

where the quantities p2i(yα) are calculated from Eqs (4) and (5). Adding these
equations to the system (15), we get an augmented system of 2M + n equations.
For getting non-trivial solutions, the rank of this system must be less than 2M .

275



For realizing this requirement, we choose from the augmented matrix a submatrix
of order 2M and vary the load parameter so that the determinant of this submatrix
turns to zero. Since the system is homogeneous then all the 2M -order determinants,
made up from the augmented system, are also zero. Consequently, the calculated
value for λ is really critical.

Example 1. Consider a simply supported beam on two rigid intermediate
supports with the locations y1 = 1/3, y2 = 2/3. The exact solution of this problem
is λcr = 9π2 = 88.82 ([15], Section 19). Our computations gave λcr = 89.14 for
J = 4 (with the error of 0.3%) and λcr = 88.91 for J = 5 (error 0.09%). For
putting together the deflection curve it is assumed that w′(0) = 1. In view of
Eq. (13) this condition obtains the form

2M∑

i=1

aiq2(i) = −1. (19)

According to the conventional method of solution, the multi-span beams are
divided into spans between the two consequent supports. The governing equation
is integrated separately for each span. The integration constants are calculated
from the continuity conditions at the supports [6,15]. If the number of intermediate
supports is greater than 2, this approach may turn out to be very troublesome. Our
method is much more simple since we treat the beam as a whole (not dividing it
into parts).

5. CRACK SIMULATION

Let us assume that the moment of inertia of the cross-section is I = I0 = const
except some discrete points x = yα, α = 1, 2, . . . , n, in which I = Iα < I0.
Such a situation can be interpreted as a damaged beam, which has n cracks
of infinitesimal width at the locations yα. Since the bending moment must be
continuous in sections x = yα, then in view of Eq. (8) we find

w′′(yα − 0) = γαw′′(yα), γα = Iα/I0. (20)

Equations (10) to (11) obtain in the sections x = yα the form

γ(α)w′′(yα) + λw(yα) = λδ, λ = PL2/(EI0). (21)

In the case of the simply supported beam we shall take δ = 0.
Equation (15) remain valid also for x = yα if we take

Rα(i, yα) = γαhi(yα)− λ[p2i(yα)− β1q2(i)yα]. (22)

The values hi(yα) and p2i(yα) are calculated from Eqs (1), (4) and (5).
Incorporating Eq. (22) into Eq. (15) we get a system of 2M + n equations, from
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which the critical parameter λcr can be calculated. The following course of solution
proceeds as shown in Section 4.

Example 2. Computer simulation was carried out for a simply supported beam
with a crack at x = 0.5. The results for J = 4 are presented in Table 1. The symbol
∆ = λcrack/λ shows the relative reduction of the buckling capacity for the cracked
beam. The functions w(x), w′(x) and w′′(x) for some values of γ are plotted in
Fig. 1.

Table 1. Reduction of the buckling load of a simply supported
beam with a crack at x = 0.5

γ 0.8 0.6 0.4 0.2 0.1 0.05 0.01

λcr 9.72 9.47 9.01 7.83 6.14 4.23 1.18
∆ 0.99 0.96 0.91 0.79 0.62 0.43 0.11

0

0.1

0.2

0.3

0.4

x

x

w
w

p
w

p
p

1

0. 5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

40

20

0

x

Fig. 1. Deflection w, slope wp and curvature wpp of a simply supported beam with a crack at
x = 0.5; – damaged beam, - - undamaged beam.
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Example 3. Karaagac et al. [17] and Skrinar [18] investigated buckling of a
cantilever beam with rectangular cross-section. The beam has a crack, located at
y ∈ (0, 1). The crack’s depth is d = 1− h/h0, where h0 is the beam’s thickness, h
is the thickness of the damaged section. The crack is modelled by a linear massless
rotational spring, connecting the uncracked parts of the beam. The governing
equation is integrated separately for both uncracked segments. For the connection
between both parts, the continuity of the displacement, bending moment and shear
force is imposed.

It is interesting to compare these results with our outcome. We have carried
out computations for three variants of the crack location: y1 = 0.2, y2 = 0.5 and
y3 = 0.8. For the crack depth the value d = 0.5 was taken. Since the two crack
parameters are related according to the formula γ = (1 − d)3, then in the present
case γ = 0.125. An overview of the obtained results is presented in Table 2.
The symbol ∆w denotes our wavelet results. Experimental data from the paper by
Karaagac et al. [17] are marked by ∆exp. The coefficients ∆1 correspond to a FEM
solution from the same paper. Data in the last two columns are taken from the paper
by Skrinar [18]. For calculating ∆2, the COSMOS 2D FEM program was applied
(here 20000 8-noded finite elements with more than 122 000 degrees of freedom
were used). The coefficients ∆3 are calculated by the analytical model of Skrinar.

It follows from Table 2 that the results obtained by the Haar wavelet method
are in satisfactory accordance with the data of other authors. Our method is
substantially simpler, since we do not need to introduce rotational springs and
divide the beam into parts between the damaged sections. Difference is also
in continuity conditions at the cracked sections. In the conventional approach
the gradient w′ is regarded as discontinuous. In our solution it is continuous
(discontinuous is the curvature). This variant of the continuity conditions seems
to us more logical, since if the first derivative w′ is discontinuous then the second
derivative is indeterminate. We consider our results about crack simulation as
preliminary – this model should be tested by solving more problems about cracked
structures. This is the object of further research.

Table 2. Reduction of the buckling load of a cracked
cantilever beam, comparison of theoretical and experi-
mental results

y ∆w ∆exp ∆1 ∆2 ∆3

0.2 0.832 0.789 0.904 0.900 0.891
0.5 0.900 0.915 0.978 0.933 0.937
0.8 0.980 0.978 0.989 0.985 0.987
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6. BUCKLING OF BEAMS OF VARIABLE CROSS-SECTION

Consider the case where the moment of inertia I(x) is a given piecewise
constant function of the coordinate x. Let us assume I(0) 6= 0 and denote
γ(x) = I(x)/I(0). In view of Eq. (9) we have λ(x) = λ0/γ(x), where
λ0 = PL2/[EI(0)]. Equations (15)–(16) remain valid if we replace there H by
γ(xl)H . If the function γ(x) has points of discontinuity x = yα, α = 1, 2, . . . , n,
then in these points the condition (21) must be fulfilled. We have to find such a
value of λ0 at which the buckling begins.

In the textbook by Timoshenko ([15], Section 26), buckling of cantilever beams
of variable cross-section is discussed. To compare our results with the Timoshenko
data we take

γ(x) = γ1[1 + (γ−1/n
1 − 1)(1− x)]n, γ1 = I(1)/I(0), n = 1, 2, 3, . . . . (23)

If n = 2, the exact solution of the problem exists. For n > 2 the solution
can be found with the aid of Bessel functions. Timoshenko’s numerical results for
n = 2 and n = 4 are presented in Tables 11–12 of his book [15]. We have carried
out computations for J = 5, γ1 = 0.4. In the case n = 2 we have (λ0)cr = 1.906
(Timoshenko’s solution gives 1.904). For n = 4 both solutions give he same result
(λ0)cr = 1.870.

Example 4. The proposed method of solution is applicable also for stepped
beams. Consider a two-stepped beam with y1 = 0.4 and γ(x) = 1 for x ∈
[0, y1], γ(x) = 0.6 for x ∈ [y1, 1]. Computer simulation for J = 4 gave
(λ0)cr = 2.056. The same problem was solved by Timoshenko ([15], Section 25),
who obtained (λ0)cr = 2.048; difference is 0.39%. Computations were carried out
also for the three-stepped beam for which y1 = 1/3, y2 = 2/3 and γ(x) = 1 for
x ∈ [0, y1], γ(x) = 0.7 for x ∈ [y1, y2], γ(x) = 0.4 for x ∈ [y2, 1]. The critical
load parameter value (λ0) = 1.988 was obtained. Again we can state that our
solution is essentially simpler to be compared with the traditional approaches since
we treat the beam as a whole and do not divide it into parts for which I(x) = const.

7. BUCKLING OF BEAMS ON ELASTIC FOUNDATION

The governing equation for buckling and vibrations of an axially compressed
beam on elastic foundation is

EI
∂4w

∂x̃4
+ (P − K̃2)

∂2w

∂x̃2
+ K̃1(x̃)w = −ρA

∂2w

∂t2
. (24)

Here I = const, K̃1(x̃) is the variable coefficient of Winkler foundation, K̃2 is the
Pasternak foundation coefficient, ρ is the material density of the beam and A is the
cross-sectional area.
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Introducing dimensionless quantities

x = x̃/L, λ = PL2/(EI), K1 = K̃1L
4/(EI), K̃=L2/(EI), µ = ρAL4/(EI)

(25)
we can rewrite Eq. (24) in the dimensionless form

wIV + (λ−K2)w′′ + K1(x)w = −µw... (26)

Solution of this equation is sought in the form

w(x, t) = W (x)T (t). (27)

Introducing Eq. (27) into Eq. (26) and separating the variables, we obtain

T (t) = A cos(ωt) + B sin(ωt), (28)

W IV + (λ−K2)W ′′ + [K1(x)− µω2]W = 0, (29)

where ω denotes the frequency of the beam vibrations.
The wavelet solution of Eq. (29) is taken in the form

W IV = aH. (30)

By multiple integration of this equation we find

W ′′′ = aP1 + C1E,

W ′′ = aP2 = C1x + C2E,

W ′ = aP3 + (1/2)C1x.2 + C2x + C3E,

W = aP4 + (1/6)C1x.3 + (1/2)C2x.2 + C3x + C4E.

(31)

Here E = [1, 1, . . . , 1] and the decimal point denotes element-by-element
multiplication. The integration constants C1, C2, C3 and C4 are calculated from
the boundary conditions.
(i) For a simply supported beam the boundary conditions are W (0) = W ′′(0) =

W (1) = W ′′(1) = 0 and we obtain

C1 = −aq2, C2 = C4 = 0, C3 = −a[q4 − 0.5q2]. (32)

(ii) Satisfying the boundary conditions W (0) = W ′(0) = W ′′(1) = W ′′′(1) = 0
for the cantilever beam, we get

C1 = −aq1, C2 = a(q2− q1), C3 = C4 = 0. (33)

The vectors qα(i) = pαi(1), α = 1, 2, 3, 4 are calculated according to Eqs (4)
to (6). All these results are introduced into Eq. (29) and the obtained equation is
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satisfied at the collocation points. The outcome can be presented in the matrix form
as aR = 0, where

R(i, l) =H(i, l) + (λ−K2)[P2(i, l) + xlq2(i)]

+ [K1(l)− µω2]{P4(i, l) + x(l)(q2(i)/6− q4(i)− x3
l q2(i)/6} (34)

for the simply supported beam and

R(i, l) =H(i, l) + (λ−K2)[P2(i, l)− xlq2(i) + q2(i)− q1(i)]

+ [K1(l)− µω2]{P4(i, l) + x(l)2[−xlq1(i) + 3q2(i)− q1(i)]/6} (35)

for the cantilever beam.
Such critical values for λ (or ω), for which the determinant |R| is zero, must be

found.
Example 5. Calculate the buckling load for an axially compressed simply sup-

ported beam on Winkler’s foundation. This problem was discussed by Timoshenko
([15], Section 21). Timoshenko gave for the critical load the formula, which in our
notations has the form

λcr = π2(m +
K1

m2π4
), K1 = const. (36)

Here m is a positive integer.
For K1 = 100 it follows from Eq. (36) that λcr = 20.003 and m = 1; our

wavelet solution gives λcr = 20.007. For K1 = 400 Timoshenko’s solution is
λcr = 49.61, m = 2; our solution gives λcr = 49.62. So we see that accordance
of the two solutions is rather good. The displacement curves for both solutions are
plotted in Fig. 2.
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Fig. 2. Buckling of a simply supported beam on Winkler’s foundation, – solution for γ = 100,
- - solution for γ = 400.
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Table 3. Critical frequencies of a vibrating cantilever
beam on Winkler’s foundation.

ω Exact Wavelet DQEM1 DQEM2

ω1 3.655 3.656 3.655 3.655
ω2 22.056 22.063 22.056 22.057
ω3 61.706 61.731 61.668 61.706

Example 6. Chen [9] considered free vibrations of a cantilever beam on
Winkler’s foundation. First three critical frequencies ω1, ω2, ω3 were calculated
by the differential quadrature element method (DQEM). Computer simulation was
carried out for λ = 0, K2 = 0, K1 = 1, µ = 1 (our notations).

We have solved the same problem by the Haar wavelet method for J = 4 (32
collocation points). All these results are shown in Table 3. Since in the present
case Eq. (29) is a linear equation with constant coefficients, it is not difficult to put
together an exact solution of the problem. For conciseness sake the course of this
solution is not shown here; the calculated critical frequencies are indicated in the
second column of Table 3. In the third column our wavelet results are presented.
The data in the fourth and fifth column are taken from Chen’s paper [9]: the data
DQEM1 correspond to five-node model with 8 elements; for DQEM2 the nine-
mode model with 8 elements was used. A good accordance of all these results can
be stated.

8. CONCLUSIONS

The Haar wavelet method exhibits several advantageous features.
(i) High accuracy is obtained already for a small number of grid points.
(ii) Possibility of implementation of standard algorithms. For calculation the

integrals of the wavelet functions (3), universal subprograms can be put
together. Another time-consuming operation is the solving of high-order
systems of linear equations and calculating high-order determinants; here the
matrix programs of MATLAB are very effective.

(iii) The method is very convenient for solving boundary value problems since the
boundary conditions are taken care of automatically.

(iv) Singularities can be treated as intermediate boundary conditions, this
circumstance to a great extent simplifies the solution. In the present paper
this approach was applied for beams with intermediate supports, for stepped
beams and for crack simulation.

(v) The obtained solutions are mostly simpler compared with other known
methods.

The aim of this paper was to demonstrate positive features of the Haar wavelet
method for treating buckling problems of elastic beams. For pedagogical reasons,
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only simple problems were considered, but the proposed technique is applicable
without essential changes also for more complicated problems.
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Elastsete talade nõtke uurimine Haari lainikute meetodil
Ülo Lepik

Haari lainikud on osutunud väga efektiivseteks mitmesuguste diferentsiaal-
ja integraalvõrrandite lahendamisel. Käesoleva töö eesmärgiks on rakendada
seda metoodikat elastsusteooria ülesannetele. On vaadeldud mitmeid elastsete
varraste nõtkeülesandeid (mitme toega vardad, pragude modelleerimine, muutuva
paksusega vardad, vardad elastsel alusel). Kasutatud meetodi efektiivsuse hinda-
miseks on näiteülesanneteks valitud klassikalised probleemid, mille puhul on täpne
lahend teada. Tulemuste analüüs näitab, et paljudel juhtudel on Haari lainikute
meetod traditsioonilistest meetoditest oluliselt lihtsam ja võimaldab saavutada
vajalikku täpsust juba väheste kollokatsioonipunktide korral. Soovitatud meetod
on eriti efektiivne juhul, kui konstruktsioonil on singulaarsusi (astmeliselt muutuv
paksus, praod jne).
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