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Abstract. The paper presents an overview of the electrical bio-impedance (EBI) signal decomposi-
tion into its cardiac and respiratory components. This problem mainly originates from the non-
stationarity of the signal components and overlapping of their harmonic spectra. In the introductory 
part of the paper, an overview of the bio-impedance signal decomposer (BISD), as a solution of the 
problem, is accompanied with an introduction to a cardiac BI signal model, which is constructed 
from the components of the application-specific orthonormal basis. In the main part of the paper a 
semi-synchronous cardiac signal amplitude estimator, which is based on the cardiac signal model 
and on the proposed extrema searching algorithm, is proposed. After that, the cardiac signal lock-in 
detection algorithm is proposed. Finally, a conditioning of the estimated cardiac signal frequency is 
discussed. The proposed amplitude estimator, lock-in detector and frequency conditioning increase 
twice the reaction speed of the BISD to the input EBI signal. The proposed version of the BISD 
estimates the cardiac signal amplitude during only a few cardiac periods, even if very large 
difference between amplitudes exists in different conditions. As a result, the entire BISD becomes 
locked during 8 s (including 4 s of soft start). The proposed improvements allowed reducing the 
latency of the BISD from 2 to 1 s. 
 
Key words: bio-impedance, signal decomposition, heart rate monitoring, amplitude estimator, 
lock-in detector, model-based signal processing. 

 
 

1. INTRODUCTION 
 
It is well known that measurement of the electrical bio-impedance as a 

parameter of living tissue gives not only information about physiological per-
formance of the tissue, but it also makes possible an analysis of the physiological 
processes or organs dynamics, such as respiration and heart activity. 

The first correlation between the estimated EBI variations and the cardiac 
activity was published by Atzler and Lehmann [1] and by Nyboer et al. [2]. As a 
result, the term impedance cardiography (ICG) was introduced in 1959 [3,4]. 
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The ICG is an EBI-based method that allows evaluating of hemodynamic 
parameters [5]. The time-variant part of the EBI, which is caused by cardiac 
activity, is taken as a basis for the ICG. The hemodynamic parameters, which are 
of the most interest for cardiologists, are the heart stroke volume (SV) and the 
cardiac output (CO). 

Respectively, impedance respirography (IRG) is an EBI-based method allow-
ing evaluation of pneumodynamic parameters. Consequently, the time-variant 
part of EBI, caused by breathing, is used as a basis for the IRG (also called 
impedance pneumography). The IRG can reflect the state of lungs and the 
respiratory system in general. The pneumodynamic parameters, especially minute 
ventilation (MV), reflect very closely the metabolic demand during physical 
exercises [6,7]. They can be used in rate-adaptive pacemakers [8–10] for estimation 
of the human workload by metabolic demand reflected in the impedance respiro-
gram, and consequently, to adapt the heart pacing rate to an adequate value. The 
latter is possible due to the fact that the heart rate and the cardiac output are 
almost linearly related with MV [10]. 

However, direct analysis and extraction (estimation) of hemodynamic and 
pneumodynamic parameters from the EBI signal without decomposing it to the 
cardiac and respiratory components may be very complicated or impossible. 

 
1.1. Publications  overview 

 
Over the past decades only tens of papers discuss the problem of EBI con-

ditioning by separating its components, the cardiac and respiratory ones, in detail. 
The methods, discussed in these papers, can be divided into three parts: ensemble 
averaging, (classical) adaptive filtering, and spectral analysis methods. Trivial 
frequency domain filtering is not taken into account, because it is suitable only 
for some stationary conditions, i.e., for the healthy human in the resting state. 

The ensemble-averaging is used in [11–13] to suppress disturbances in the first 
order time-derivative impedance cardiogram (DICGm). Woltjer et al. [14], 
referring to Kim et al. [15] declared that averaging has been shown to be effective 
in eliminating the effect of respiration. However, it is clear that the disturbing 
components must have a zero mean value to be effectively suppressed by averag-
ing. But it becomes possible only, when averaging is done during a long time 
interval. Such averaging can suffer from the variability of the DICGm signal 
shape and event latencies that can cause less distinct events in the signal to 
disappear in the averaged signal [16]. 

Adaptive filtering is used by Yamamoto et al. [17] for suppression of the 
disturbances in the DICGm signal. This solution is based on the digital infinite 
impulse response (IIR) band-pass filter, which moves around the centre 
frequency (heart rate). Unfortunately, this solution can introduce non-linear 
phase distortion into the DICGm signal. Another application of the adaptive 
filtering for reducing the respiration and motion artefacts in electrogastrogram is 
described in [18]. Disadvantage of these filters appears in the need for a reference 
disturbance signal. The same disadvantage appears in a system for adaptive 
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cancellation of the respiratory artefact investigated in [19]. The scaled Fourier 
linear combiner (SFLC) [20] reconstructs the DICGm signal from harmonic 
spectral components, found by using an adaptive least mean square (LMS) filter, 
with reference inputs related to the R-R intervals of ECG. 

The third approach is based on spectral analysis methods. In particular, the 
wavelet-based time-frequency analysis is used in [21,22] to select the disturbance-
free DICGm signal from the noisy input. However, the spectral analysis, and 
using of wavelets in particular, require a great number of spectral components 
(levels in the wavelet case) to represent the input signal accurately. Another 
difficulty can arise by selection of the threshold, at which the separation of the 
useful component from noises is performed. In [22] the hard threshold is used, 
which has a disadvantage similar to the filtering with a constant cut-off 
frequency. The method [21] uses the soft threshold, but the breath holding during 
8 s is needed to construct the auto-regressive (AR) model of the cardiac EBI 
signal. Moreover, the pre-whitening of the input EBI signal and spline-based 
model construction of the respiratory component are required. 

In regard to the need of on-line, or even real-time, monitoring of the hemo-
dynamic and pneumodynamic parameters during exercises and especially in the 
ambulatory conditions, the ensemble averaging approach is not suitable, because a 
long time interval is needed for collecting a great number of ICG periods, sufficient 
to perform an effective suppression of disturbances. The adaptive filtering and 
spectral analysis are more promising approaches despite the fact that some of these 
require a reference disturbance signal. Moreover, all the above described noise 
cancellation methods and systems require the heart rate estimates obtained from the 
electrocardiogram (ECG). The availability and accuracy of the ECG-based heart 
rate estimates are the mandatory prerequisites for the reliability of such methods. 
An exception to this rule is the coherent ensemble averaging method, investigated 
in [21]. However, although this method does not use the ECG signal, it has a 
common disadvantage with the ensemble-averaging technique. 

Taking into account all mentioned above, it is clear that the decomposition of 
the total EBI signal into its components is not a trivial filtering, and advanced 
signal processing methods are needed to achieve the goal: to make the separate 
analysis of heart and respiration activities possible. 

 
1.2. The  bio-impedance  signal  decomposition 

 
Assume that the EBI components are obtained from independent signal 

sources, thus the total signal ( )S t  can be expressed as a sum of the basic 0 ,S  
cardiac C ( )S t  and respiratory R ( )S t  components and unwanted artefacts, such as 
stochastic disturbances S ( )n t  and motion artefact M ( )n t  as well: 

 

0 C R S M( ) ( ) ( ) ( ) ( ).S t S S t S t n t n t= + + + +                         (1) 
 

Since the expression (1) is only a single “view” to the electrical BI of the 
tissue region between the selected electrodes, the task can be described as 
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follows: we have five unknowns, which are needed to be found (separated), and 
only one known component – the sum of these unknown components, thus their 
linear combination. 

Often the EBI signal can be expressed in a simplified form: 
 

C R( ) ( ) ( ).S t S t S t= +                                           (2) 
 

After such simplification, through exclusion of some components other than 
cardiac and respiratory ones, the main problem remains – there are one known 

( )S t  and two unknown C( ( )S t  and R ( ))S t  components, interrelation of which 
can be described by a single expression. The latter two components have to be 
found using only the known observable variable ( ).S t  

Moreover, taking into account peculiarities of the cardiac and respiratory EBI 
components, we can list main difficulties, which have to be overcome: 
• harmonic frequency domain spectra of the cardiac and respiratory components 

can often be overlapped; 
• the decomposition procedure assumes that the separated components must 

remain unchanged individually; 
• the EBI signal is non-stationary due to the variations of the heart rate and lung 

ventilation rate in time domain, and moreover, due to the motion artefacts, if 
such are presented in the EBI signal; 

• low frequency nature of the cardiac and respiratory signal components. 
An adaptive bio-impedance signal decomposer, intended to solve the signals 

separation task and to overcome related difficulties, was proposed by the author 
in [23–27]. 

The BISD is an on-line signal processing method, which decomposes the EBI 
signal into its components in time domain by continuously tracking the cardiac 
signal parameters, such as frequency (phase) and amplitude, and no external 
reference signals are needed. 

 
1.3. Review  of  the  bio-impedance  signal  decomposer 

 
The BISD is a fast, in its reaction to the signal changes, method for separation 

of the cardiac and respiratory components. After applying enhancements, pro-
posed in Section 2, the BISD produces now only one second constant delay of 
the separated cardiac and respiratory components with regard to the input EBI 
signal1. Moreover, the BISD uses only the total EBI as its input signal without 
need of any external reference signals. 

Additionally, heart rate estimations, derived from other signals like ECG, can 
be used for supporting the procedure, if they are available, but this is certainly 
not obligatory. Such an approach eliminates the direct dependence on the ECG 
signal, but allows using additional data to increase the speed and reliability of the 
separation process. 

                                                                 
1 The previous version of the BISD produced two second delay. 
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First of all, the BISD is oriented to applications, requiring on-line, or even 
real-time, monitoring of both, the cardiac and respiratory activity. 

 
1.3.1. The main structure of the BISD 

The idea of the proposed solution is to replace C ( )S t  and R ( ),S t  expressed in 
Eq. (2), by their models CM ( )S t  and RM ( ),S t  respectively. 

The conceptual block-diagram of the adaptive cardiac signal model based 
BISD, proposed in the previous publications and intended to separate the cardiac 
and respiratory EBI components, is shown in Fig. 1, where ( )S t  is the total input 
EBI signal; C( )S t%  and R ( )S t%  are estimates of the cardiac and respiratory compo-
nents, respectively and CM ( )S t  and RM ( )S t  are models of these signals; the 
functions CM Cf ( ( ))S t%  and RM Rf ( ( ))S t%  define the models of the cardiac and 
respiratory signals, respectively. 

The block-diagram of the BISD practical realization is shown in Fig. 2. The 
module, which constructs the cardiac signal model by tracking its parameters 
synchronously with the estimated cardiac signal, is named signal-shape locked 
loop (SSLL), which is described in [25–27]. 

Since the respiratory EBI signal is much less deterministic than the cardiac 
one, the signal modelling procedure is more complicated. The BISD uses the FIR  
 
 

 
 

Fig. 1. The conceptual block-diagram of the bio-impedance signal decomposer into its cardiac and 
respiratory components. 

 
 

 
 

Fig. 2. The block-diagram of the bio-impedance signal decomposer. 
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(finite impulse response) low-pass-filter LPFR with a constant cut-off frequency 
cut 1.2 Hzf =  to suppress the remaining part of the cardiac EBI signal model 
CM ( ),S t  subtracted from the input EBI signal ( ).S t  The second low-pass filter 

LPFC is used in the upper branch of the BISD to compensate the delay of the 
respiratory signal in the LPFR, and to suppress the high-frequency noise. Both 
filters, LPFR and LPFC, are linear phase FIR filters using Hamming window and 
are of the same length (in the last realization, both filters have lengths of 401 
samples2). The latter peculiarity is needed to synchronize the outputs of the 
filters. Moreover, an additional time or phase shift 0(t  or (0),ϕ  respectively) of 
the cardiac EBI signal model CM ( )S t  towards the ‘future’ is required to com-
pensate the delay of the signal in the filter LPFC and synchronize the cardiac 
signal model CM ( )S t  with the input EBI signal ( ).S t  

 
1.3.2. The cardiac EBI signal model 

The real cardiac signal is a complicated waveform (Fig. 3, upper plot) and 
consequently several harmonic spectral components are needed to model this 
signal accurately (Fig. 3, lower plot). 

Despite the fact that orthonormal basis (OB), formed from the harmonic 
functions, 
 

{H ( )} {cos ( ), sin ( )},k k kt t t=                                   (3) 
 

is powerful and widely used versatile signal processing tool, some application-
specific orthonormal basis (ASOB) may give more appropriate and compact 
spectral representation of signals in practical situations. 

 
 

 
 

Fig. 3. An averaged through multiple periods and scaled cardiac EBI signal C ( )S t  (upper plot); for 
illustration, scaled harmonic power spectrum of an averaged through multiple periods cardiac EBI 
signal is shown (lower plot). 

                                                                 
2 The clock frequency of the entire BISD is 200 Hz. 
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It is essential to use application-specific functions, representing characteristics 
of the signals to be processed. There are other conditions to be considered for 
flexibility and computational efficiency: 
• using orthogonal system of functions makes possible independent detection of 

the components; 
• as EBI signals are varying, the weighting function should have one or two 

parameters that could be used for adaptation to the waveform; 
• simple integration formulas can be derived from orthogonal polynomials. 

From classical orthogonal polynomials the proper choice would be Jacobi 
polynomials, which are defined in the interval [–1, 1) with the following 
weighting function 
 

,W ( ) (1 ) (1 ) , [ 1,1).t t t tΑ Β Α Β= − + ∈ −                              (4) 
 

Use of the Jacobi weight function for the cardiac signal modelling allows 
adapting the model shape to the signal shape by changing the values of para-
meters. Moreover, non-equal values of the parameters give non-symmetrical 
shape to the model. Such flexibility can be very useful for modelling the cardiac 
signal with a complicated shape. 

The application-specific orthonormal basis has been designed applying the 
N th order Gram–Schmidt process, called also standard N th order Gram–Schmidt 
orthogonalization process. 

Thus the result of this process is a set of orthogonal vectors Q ( ),k t  where the 
in-phase component of the cardiac EBI signal model is constructed from the 
second 2Q ( )t  component of the proposed ASOB: 
 

C
CM C 2

( )( ) ( )Q ,tS t A t ϕ
π

 =  
 

                                    (5) 

 
where CA  is the detected amplitude and C [ , )ϕ π π∈ −  is the detected phase of the 
cardiac EBI component. 

The first component 1Q ( )t  of the ASOB has to be orthogonal with the cardiac 
EBI signal, thus it can be used to synchronize the second component 2Q ( )t  of 
the ASOB against the cardiac signal C ( ).S t  

In such a manner the model can approximate the most significant features of 
the one-period signal shape of the cardiac EBI signal. 

The designed Jacobi weight function based ASOB is shown in Fig. 4, where 
one can see that the cardiac signal can be modelled much more accurately using 
only the second component of the ASOB, synchronous with the cardiac signal, 
than using the harmonic basis. 
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Fig. 4. The first and the second components of the designed ASOB and an averaged through 
multiples periods and scaled cardiac EBI signal C ( ),S t  which is synchronous with the odd 
component 2Q ( )t    of ASOB (upper plot): A = B = 5 (see Eq. (4)); scaled harmonic power spectra 
of the same signals (lower plot). 

 
 

2. ENHANCEMENTS  FOR  THE  BISD 
 
In spite of the promising results of the BISD, a more accurate separation of 

the cardiac and respiratory components is required, even in extremely non-
stationary conditions, such as an ambulatory one. 

 
2.1. Semi-synchronous3  amplitude  and  extrema  estimator 

 
An amplitude estimator, which was used in the BISD before applying the 

proposed one, is described in [23–27]. In that correlation-based estimator, the input 
cardiac signal is multiplied by the in-phase reference signal, after that an absolute 
value of the result is passed through the IIR low-pass filter for smoothing the 
final amplitude estimate and then scaling it by a predefined constant factor. 

The main disadvantage of such estimator is sufficiently wide deviation of the 
multiplication result around its mean value. To effectively suppress these 
undesired deviations, the low-pass filter with a time constant larger than the 
period of the useful signal has to be used. However, this is not possible if we 
operate with such low frequency signals as the cardiac EBI signal, because in this 
case the estimator settling time is long and its reaction to the amplitude value 
changes becomes very slow. The slow reaction causes distortions in the BISD, 
because the input of the cardiac signal phase detector is divided by the estimated 

                                                                 
3  In this paper synchronous means synchronization with the cardiac EBI signal, if not defined 

otherwise. 
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amplitude value [24]. Moreover, the cardiac EBI signal model, in the BISD feed-
back, is multiplied by the same estimated value. 

Next we describe the cardiac EBI signal amplitude estimator, which is based 
on the signal extrema searching algorithm. This algorithm operates synchronously 
with the cardiac EBI signal, if the BISD is locked in, and asynchronously in the 
opposite case. The algorithm is embedded into the block SSLLC in Fig. 2. The 
input signal for the proposed amplitude estimator is the separated cardiac signal 

C( ).S t%  
 

2.1.1. The extrema looking algorithm 
The proposed extrema looking algorithm can be logically divided into three 

stages. The first one is the continuously searching algorithm for extrema 
candidates. At this stage the algorithm compares the current signal value with the 
last maximum or minimum values respectively, as it is shown in the pseudo code 
below: 

variables Maximum_New, Minimum_New /* extrema candidates values */ 

variable Input /* The input cardiac signal value */ 

 

IF Input > Maximum_New THEN 

 SET Maximum_New TO Input 

END IF 

 

IF Input < Minimum_New THEN 

 SET Minimum_New TO Input; 

END IF 

At the second stage, the found extrema values are applied to two median 
filters inputs. 

If the BISD is not locked with the cardiac signal, then the median filter, 
intended for the maximum values, will get to its input the last found maximum 
value, at the moment when the cardiac signal model period starts or if the 
asynchronous time counter is equal to zero. 

Similarly, the median filter, intended for the minimum values, will get to its 
input the last found minimum value, at the moment when the middle point of the 
cardiac signal model period is reached or if the asynchronous time counter is 
equal to zero as well. 

In turn, the zero value will be assigned to the time counter three times per 
second. For more details the pseudo code is presented below: 

variable Counter /* a milliseconds counter */ 

variables Max_Filter, Min_Filter /* Median filters4 for extrema candidates */ 

 

IF the BISD is locked THEN 

 INCREMENT Counter; 

                                                                 
4 Median filters can be objects or functions, their realization is not discussed here. 
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 IF Cardiac signal period begins OR Counter = 0 THEN 

  APPLY Maximum_New AS input to Max_Filter; 

  SET Maximum_New TO 0.0; 

 END IF 

 

 IF Cardiac signal period middle sample reached OR Counter = 0 THEN 

  APPLY Minimum_New AS input to Min_Filter; 

  SET Minimum_New TO 0.0; 

 END IF 

 

 IF Counter > 300ms THEN /* 3 times per second */ 

  SET Counter TO 0; 

 END IF 

 

END IF 

For the case when BISD is tracking the cardiac signal (is locked), the 
algorithm looks similar, but the input (cardiac) signal values will be applied to 
the median filters inputs at the moments when the cardiac signal model has its 
own minimum and maximum values, respectively. In this case, the time counter 
is keeping its value greater than zero. The pseudo code listing is the following: 

variable Counter /* a milliseconds counter */ 

variables Max_Filter, Min_Filter /* Median filters for extrema candidates */ 

variable Input /* The input cardiac signal value */ 

 

IF the BISD is locked THEN 

 SET Counter TO 1; 

  

 IF Cardiac signal model at its maximum THEN 

  APPLY Input AS input to Max_Filter; 

  SET Maximum_New TO 0.0; 

 END IF 

 

 IF Cardiac signal model at its minimum THEN 

  APPLY Input AS input to Min_Filter; 

  SET Minimum_New TO 0.0; 

 END IF 

 

END IF 

 
 
2.1.2. Estimating the amplitude value 

The third stage is an estimation procedure of the cardiac signal amplitude 
value. 
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If the BISD is locked in, then the amplitude evaluation occurs at the cardiac 
signal period starting sample. In the opposite case it occurs also when the time 
counter (declared in the previous subsection) value will be equal to zero: 

variable Amp /* the estimated cardiac signal amplitude value */ 

variable Swing /* the swing of the cardiac signal around its baseline */ 

 

IF Cardiac signal period begins OR Counter = 0 THEN 

 COMPUTE Swing AS difference between median filters Max_Filter and 
Min_Filter outputs 

 COMPUTE Amp AS Swing divided by 2 

END IF 

The both median filters, used in the proposed algorithm, have their lengths 
equal to five elements. 

As a result, the estimated amplitude value is updated each time when the 
cardiac signal model period begins and is kept until the next period starts. In this 
case no multiplicative distortions occur during the cardiac signal period, if BISD 
is in the locked state. 

 
2.1.3. Scaling the estimated amplitude 

In the previous subsection the amplitude estimate was treated as maximum 
deviation of the signal from its base line. However, further it will be used in the 
meaning of a scaling factor and it must be normalized in the context of the 
selected signal basis 
 

_
_ _ _

AmpAmp Norm
Amp Norm Factor I

= .                           (6) 
 

Thus the input signal with the normalized amplitude, equal to unity, must 
exactly coincide with the synchronous component of the selected basis. And, 
consequently, for the basis described in Section 1.3.2, the normalization factor 
can be expressed as 
 

2_ _ _ max(Q ( )).Amp Norm Factor I t=                             (7) 
 

The proposed amplitude estimator noticeably improves the operation of the 
BISD, especially in the synchronization process speed and in more accurate and 
adequate continuous tracking capability of the signal amplitude. Also, updating 
the estimated amplitude values synchronously with the beginning of the input 
signal period, allows avoiding multiplicative distortions in the following signal 
processing steps. Results, which demonstrate these improvements, are presented 
in Section 3. 

 
2.2. Lock-in  detector 

 
With an lock-in detector the situation is similar to the described above for the 

amplitude estimator. The well-known correlation-based lock-in detectors have 
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exactly the same disadvantages as the amplitude estimators of the same type 
(correlation-based) – the sufficiently wide deviation of the multiplication result 
around its mean value, which is difficult to suppress during reasonable time 
interval when operating with low-frequency signals such as the cardiac one. 

Therefore we shall describe a lock-in detector, which is based on the 
normalized error level between the input signal and its synchronous model. 

To increase robustness of the proposed detector, two kinds of error signals 
(differences) between the cardiac signal and its model are used. These are the 
continuous normalized error, described in Section 2.2.1, and its downsampled 
version (Section 2.2.2). 

 
2.2.1. Cardiac signal model continuous error 

Firstly, the input cardiac signal has to be normalized. The pseudocode of this 
procedure is: 

variable Amp_Minimal /* the minimal allowed amplitude value */ 

variable Amp_Norm /* the normalized amplitude value from the section 2.1.2 */ 

variable Input /* The input cardiac signal value */ 

 

SET Amp_Minimal TO 0.05 

 

IF Amp > Amp_Minimal THEN /* the condition to avoid division by 0 */ 

  

 DIVIDE Input BY Amp_Norm 

 USE new value of Input 

 

END IF 

After that an error between the normalized input signal and its synchronous 
model 2Q ( )t  can be calculated and scaled by the factor Amp_Norm_Factor_I 
(see Section 2.1.2): 

 

2Q ( ) .
_ _ _
Input tError

Amp Norm Factor I
−=                                   (8) 

 

And then the estimated error value is mapped into the range [0,1]  by using 
the normalized ( 1)a =  Gaussian function with zero mean ( 0) :µ =  

 

( )
2

2
( )Gauss , , , exp .

2
xx a a µσ µ

σ
 − −=  
 

                             (9) 

 

Thus the resulting mapped continuous error is: 
 

_  1 Gauss( , , , ),Error Continuous Error aσ µ= −                   (10) 
 

where 1,a =  0µ =  and 0.5.σ =  
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To get the error value smoother in time domain, the continuous error is passed 
also through the first order Butterworth low-pass filter (cut-off frequency is 
0.8 Hz). 

 
2.2.2. Cardiac signal model downsampled error 

The downsampled version of the error between the cardiac signal and its 
model is sampled at four points per cardiac signal model period. The points are 
placed near to the cardiac signal model extrema on the distances equal to ± 0.1 
parts of the current period duration. Then the resampled error values are passed 
through a median filter of 5 points (downsampled points). 

 
2.2.3. Lock-in detector summary 

In the proposed lock-in detector an average of the continuous normalized 
error and its downsampled version is used. To compute the average, a zero order 
extrapolation procedure is applied to the downsampled error signal: 

 

1_   ( _  _ _ ).
2

Error Avg Error Continuous Smoothed Error Downsampled= +   

(11) 
 

After that the maximum value of the averaged error (11) is found during two 
cardiac signal model periods and is mapped into the range [0,1],  using the 
normalized Gaussian function with zero mean: 

 

_ Gauss max ( _ ), 0.5,1, 0.0 .
twocard periods

Error Final Error Avg =  
 

         (12) 
 

To obtain two state logic output, the resulting error value (12) is passed 
through the trigger with hysteresis. The trigger is switching to high state at the 
threshold equal to 0.6 and to low state at the threshold equal to 0.42 (thresholds 
are selected empirically). 

The proposed lock-in detector allows to determine, in different conditions, if 
the BISD is synchronized with the cardiac EBI signal or not. Results are 
presented in Section 3. 

 
2.3. Conditioning  the  estimated  cardiac  signal  frequency 

 
Since the value of the time/phase shift of the cardiac signal model CM 0( )S t t+  

(Fig. 2) depends on the freshly estimated cardiac signal frequency, and since this 
frequency can have unwanted variations during the cardiac signal period, then the 
accuracy of the entire BISD is reduced due to mismatches in time between the 
cardiac signal model and the cardiac component of the total input signal at the 
subtraction point (lower branch on the block diagram in Fig. 2). 

To reduce such influence, the estimated frequency signal is sampled and held 
at the cardiac signal model extrema and at its zero crossing points. 
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3. RESULTS 
 
The collection of bio-impedance EBI signals, recorded in clinical conditions, 

was used for testing the BISD. The impedance measurements were carried out by 
using the CircMon device (JR Medical Ltd, Estonia) and by using the bio-
impedance measurement device designed in the Department of Electronics at 
Tallinn University of Technology. 

Figures 5–7 present the time responses of the BISD to the input signals 
obtained from different persons. Each of the figures consists of five plots. 
• The input signal ( ),S t  delayed by one second. 
• The separated respiratory signal RM ( ).S t  
• The separated cardiac EBI signal; the estimated maximum (red dotted line) 

and minimum (blue dotted line) levels and the amplitude (green dashed line 
with dots) are shown on the same plot. 

• The lock-in detector output (solid black line) and Error_Final signal (see 
Eq. (12)) value (blue dotted line). 

• The estimated cardiac EBI signal frequency. 
All signals on these figures are shown in relative units, obtained from the 

measuring devices, except the lock-in detector outputs and the cardiac signal 
frequency in Hz. 

The input signal is scaled by the ramp-like function during the first 4 s to 
reduce the FIR filters transient artifacts and therefore to guarantee soft start of the 
BISD. 

 
 

4. DISCUSSIONS  AND  CONCLUSIONS 
 
Taking into account the possibility of the cardiac and respiratory components 

harmonic spectra overlapping and non-stationarity of these components, it seems 
to us that using time domain signal model based processing can be helpful in the 
defined task – to separate desired components, the cardiac and respiratory ones, 
from the total input EBI signal. 

It became evident that at least the parametric time domain model of the 
cardiac component can be developed. The respiratory component is less 
deterministic due to its arbitrary and widely varying ventilation rate and therefore 
it is complicated to model it. 

Moreover, the varying conditions, such as different patients with different 
kinds of pathologies require that the EBI signal decomposition method has to be 
as flexible as possible for successful operation. The method must be accurate and 
robust enough to be usefully implemented in clinical and especially in 
ambulatory conditions. 

The amplitude estimator, lock-in detector and cardiac signal frequency 
conditioning, proposed in the paper, significantly improve the functionality of the 
BISD. Especially, enhancements are achieved in the reaction speed of the BISD 
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to the input EBI signal changes. From Figs 5 to 7 it is seen that after applying 
improvements to the BISD, it estimates cardiac signal amplitude during only few 
cardiac periods, even if very large difference between amplitudes exists in 
different conditions. And as a result, the entire BISD becomes locked during 8 s 
(including the 4 s soft start). 

 
 
 

 
 

Fig. 5. The time domain response of the BISD with the proposed improvements used with the EBI 
signal, measured on the person No. 1. 
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Fig. 6. The time domain response of the BISD with the proposed improvements used with the EBI 
signal, measured on the person No. 2. 

 
 
The proposed improvements allowed to reduce the length of the FIR filters 

(Fig. 2) from 801 samples (in the previous version of the BISD [23–27]) to 401 
samples. Thus the latency of the BISD is reduced from two to one second, taking 
into account that the whole BISD system sampling rate is 200 samples/s. 
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Fig. 7. The time domain response of the BISD with the proposed improvements used with the EBI 
signal, measured on the person No. 3. 
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Parandatud  täpsuse  ja  vähendatud  latentsiga   
bioimpedantssignaali  lahutaja 

 
Andrei Krivoshei 

 
On vaadeldud mõõdetud elektrilise bioimpedantssignaali lahutamist südame-

tegevusele ja hingamisele vastavateks komponentideks. Lahutamise raskus ja 
mittetriviaalsus on põhjustatud bioimpedantssignaali komponentide mittestatsio-
naarsusest ning nende spektrite ülekattuvusest. Ühe võimaliku probleemi lahen-
dusena on antud ülevaade bioimpedantssignaali lahutajast (BISD). Koos BISD-
süsteemiga on vaadeldud ka rakendusspetsiifilist, ortonormaalset baasi kasutavat 
mudelit südamesignaali kirjeldamiseks. Artikli põhiosas on südamesignaali amp-
lituudi määramiseks esitatud poolsünkroonne hindamisalgoritm, mis baseerub 
kirjeldatud mudelil ja maksimumide otsimise algoritmil artikli samas osas. Eelne-
vale tuginevalt on välja töötatud südamesignaali lock-in-detektori ja saadud 
südamesignaali sageduse järeltöötluse algoritm. Kirjeldatud algoritmid võimal-
davad BISD-süsteemi reaktsioonikiirust muutuvale sisendsignaalile parandada 
kuni kaks korda. Ka väga erinevate algsignaalide korral suudab BISD-süsteem 
anda adekvaatse hinnangu amplituudile ainult mõne südamelöögi järel. BISD-
süsteem kohandub uuele signaalile umbes 8 sekundiga (kaasa arvatud 4-sekun-
diline “pehme start”). Pakutud täiustused lubavad BISD-süsteemi latentsust 
vähendada kahelt sekundilt ühele sekundile. 

 


