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Abstract. The paper presents a method of terrain classification and path planning for unmanned 
ground vehicles. The terrain classification is done on imagery that is acquired from UAV 
(unmanned aerial vehicle) or satellite and is used for UGV (unmanned ground vehicle) path 
planning thus introducing collaboration capabilities to the system of two. The system complements 
the UGV on-board navigation system by increasing its perception distance and providing long-
range path planning capability. 
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1. INTRODUCTION 
 
Our ultimate target is to build an UGV that is capable of driving inde-

pendently to given GPS coordinates. For off-road navigation it is important to 
know what is behind a bush or a house ahead for cul-de-sac or rough terrain 
avoidance. Having fresh data about terrain behind horizon helps to reduce time 
and energy spent on wandering and to avoid potentially dangerous terrain that is 
hard to detect on time with on-board sensors (ditches and cliffs). The perception 
distance of an UGV is usually limited to visibility range of its on-board sensors; 
it is rarely over 100 m [1], which is sufficient for obstacle avoidance but is 
insufficient for long-term path planning. 

To increase UGV perception distance and overall performance we use aerial 
imagery provided by UAV for analysing terrain ahead of the UGV and for 
generating path to the target position. We detect a set of features on aerial 
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imagery that should be preferred (such as roads, grass) or avoided (buildings, 
water) during navigation and feed the acquired information into the path planner. 

Effectiveness of fusing UGV on-board sensor data with aerial imagery has 
been previously demonstrated in [2]; in these experiments with aerial data 
significant increase in UGV average speed and decrease in required human 
interventions has been measured. These experiments, however, relied heavily on 
3D point cloud acquired by LiDAR mounted to UAV but our system must be 
limited to passive sensors (cameras, gyro, GPS). 

Suitability of convolutional neural networks for terrain classification was 
demonstrated by Sermanet et al. [3,4]; they built a robust UGV navigation system 
that relied solely on visual data. Their system uses two-level architecture: fast 
obstacle detection module with perception range of around 5 m and slower “long-
range” vision module with perception range around 35 m. The short range 
module was trained to avoid immediate obstacles and long range module’s task 
was to look ahead and find passages. Our described method can be seen as 
important addition to this system as it adds an additional module with far longer 
perception range. 

For aerial imagery terrain classification, a multilayer convolutional artificial 
neural network is used. Based on terrain classification results, a cost map is 
generated and fed into a path planner. The path planner will calculate an optimal 
path to given target position from current UGV location (Fig. 1). As the UGV 
travels along the path it gathers fresh data about terrain and uses it to retrain the 
network and update the path. The cycle is repeated every few minutes to keep our 
system adaptive and capable of learning new terrain. 

The UAV and UGV are built in Estonia [5–7]; current efforts are focused in 
introducing collaboration capabilities into the system of two. The target is to 
reduce UGV energy consumption by fusing UGV on-board navigation system 
with a long-range path planner that relies on aerial imagery. 

In comparison to our previous paper [8] we report significant increase in 
terrain classification capability of the convolutional neural network as the soft-
ware that prepared imagery for the network has been improved. In addition, we 
introduce a path planner and demonstrate that the classifier output can be used 
for navigation. 

 
 

2. TERRAIN  CLASSIFICATION 
 
As terrain classifier we use an artificial neural network (Fig. 2) with three 

hidden layers; the first two convolutional layers are feature extractors and the 
third layer is a linear classifier. 

The convolutional layers are well suited for feature extraction as they can 
extract spatially local features and are invariant to shift rotation and scale trans-
formations [9]. In addition, the layers are connected so that they extract the 
features from gradient images instead of colour intensity values, achieving 
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invariance to lighting conditions [10]. When compared to fully connected layers, 
the convolutional layers have smaller variable space and thus can be trained 
much faster and with smaller sample set [11]. 

The classifier layer is a fully connected layer of 100 neurons. In output layer 
there is an independent output for each trained class/feature. Each output 
represents likelihood of a feature present in the input pattern. 

Fig. 1. Terrain classification and path planning. 
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Fig. 2. Network structure. 
 
 
In the input layer we have three 29 × 29 neuron grids; each grid is for a color 

channel of 29 × 29 pixel input pattern. Optionally we can accommodate an addi-
tional grid for infrared channel when imagery is available. Near-infrared imagery 
can effectively be used to detect vegetation as chlorophyll absorbs red light and 
reflects in the near-infrared channel [2]. 

First hidden layer contains six 13 × 13 neuron feature maps that are connected 
to input layer by using 5 × 5 shared kernels. The weights are shared by all 
neurons on the same feature map that connect to given input grid so there are 
only (5 × 5 + 1) × 6 × 3 = 468 weights connecting the 29 × 29 × 3 = 2523 neurons 
in the RGB input layer and 13 × 13 × 6 = 1014 neurons in feature maps (includ-
ing bias connections). 

Second hidden layer contains fifty 5 × 5 feature maps that are connected to 
previous layer in the same way as the first layer is connected to the input layer. 
The layer contains 5 × 5 × 50 = 1250 neurons and uses (5 × 5 + 1) × 50 × 6 = 
7800 weights to connect them to the previous layer. 

Third hidden layer is a fully connected linear classifier that contains 100 
neurons; each of them is connected to all neurons in the previous layer using 
100 × (1250 + 1) = 125 100 weights in total. 

The final output layer is also a fully connected layer that contains one neuron 
per feature category; in case of four categories it contains 4 neurons and 
4 × (100 + 1) = 404 weights. 

The pixel intensity values (in the range of 0 to 255) of the input pattern are 
fed directly into network inputs; the scaling of network inputs into the range  
[– 1…1] is left to weights that connect network layers. The scaling is necessary 
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because we use tanh (1.7159 × tanh (2/3 x)) [11] function as neuron activation 
function and we want to keep the neuron input in sigmoid part of the tanh 
function. To reduce training time, we initialize the network weights into random 
values in the range of – 0.004 to + 0.004, so the network input (in the range of 0  
to 255), multiplied by weight (in the range of – 0.004 to + 0.004) will be 
approximately in the range of – 1 to + 1. 

To train the network, the backpropagation method is used, but to shorten time, 
required for training, a second order method called “stochastic diagonal Leven-
berg Marquardt” [11] is used. The second order method allows picking different 
learning rate for each weight in the network and should shorten the learning time 
threefold without introducing significant computational overhead [11]. 

We have made a preliminary batch of tests to find optimal network size (the 
number of feature maps and neurons in the classifier); in short, we observed 
slight increase in classification capability when we increased the number of 
feature maps in the first hidden layer and dramatic decrease in training time when 
we halved the size of the second and third hidden layers. The experiments 
described in the current article, however, are executed with network configura-
tion that is described above. 

 
 

3. MAP  GENERATION  AND  PATH  PLANNING 
 
We define map as a grid of nodes; at each node we can predict likelihood of 

the presence of all features. In short, our map is a grid of confidence vectors. To 
simplify the path planning task we use a threshold for every feature category to 
binarize the likelihood. The threshold is calculated from the training set after the 
network training cycle is completed (more on that in the following paragraph). 

After the map is binarized (at each node a feature must either be definitely 
present or definitely missing) the cost map can be easily generated. A weight 
factor can be assigned to each feature category depending on whether the feature 
is easy to traverse (roads, grass) or impassable (houses, bushes). The easily 
traversable feature classes get negative weight and impassable terrains get 
positive weight. 

To calculate terrain traverse cost at each node we calculate a weighted sum 
and offset it by a positive constant that makes sure that the cost is always 
positive: 

 

UGVcos ,i i
t p w const C= + +∑  

 

where p  is the binarized confidence vector and w  is the weight vector. For areas 
that are explored by UGV, an additional term UGVC  can be added to incorporate 
UGV data about the terrain. 

One thing to note here is that cost for unknown terrains (with no features 
detected then the confidence vector is zero) is equal to the const that is higher 
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than the cost for easily traversable terrain but remains lower for impassable 
terrain. 

For path planning the A* [12] algorithm is used. As the map, generated from 
aerial imagery, is a 2D rectangular grid, it is easy to define base cost of the 
movement from one cell to another as the distance of the two nodes, and to 
multiply it by the cost defined earlier. Base cost is 1 for horizontal and vertical 
movements and 2  for diagonal movements. 

The generated path is too rough for short-range navigation; the UGV must 
rely on onboard sensors to avoid immediate obstacles. The path, however, is 
detailed enough to direct the UGV to a nearby road or to use pathways in the 
forest. 

 
 

4. TEST  SET-UP 

4.1. Classification 
 
To verify the performance of the terrain classifier and path planner, two 

different areas were selected and corresponding aerial RGB photographs were 
loaded from Estonian Land Board database; the size of one image (suburbs) is 
25 Mpx and the size of the other image (marsh) is 12 Mpx. The Estonian Land 
Board database was used because of the easy availability of aerial imagery and 
because the imagery is similar to the imagery acquired by UAV (up to 10 pixels 
per meter resolution). 

The images were manually classified and then scaled down by 2 × in order to 
reduce the scale of manual classification errors. During manual classification it 
was difficult to find exact boundaries of features and by scaling the classified 
image we wanted to reduce the percentage of uncertain pixels in 29 × 29 input 
patterns. From each image, two sets of data were generated by randomly picking 
29 × 29 pixel patterns: training and testing sets for the classifier. 

The training set contains 30 000 patterns and the testing set 3000 patterns. We 
initially used 60 000 patterns for testing like Simard et al. [10] but halved the 
training set for convenience (smaller files, faster training passes). For testing set 
size we chose 10% of the training set. The patterns are overlapping but we do not 
see this as a problem because as long as the patterns are not matching they 
contain different combinations of features and thus are unique inputs for the 
classifier. 

Extra care was taken to ensure that any of the patterns would not contain too 
few pixels from any of the features. A pattern was discarded when a feature was 
presented only by few pixels in the pattern: each feature had to be presented by at 
least 100 pixels or not be presented at all. 

The network training was started with randomized network weights and 
learning rate of 0.1%. The whole training set was introduced to the network for 
several times (passes); the learning rate was multiplied by 0.9 after each pass. For 
training we used backpropagation algorithm but before each pass the averages of 
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second order derivatives for stochastic diagonal Levenberg Marguardt method 
were evaluated by using 500 random patterns from the training set. 

We trained the network outputs to be independent; each network output shows 
likelihood of the presence of the corresponding feature in the network input 
pattern. A network output is 1 if corresponding feature is present in the input 
pattern and – 1 if not. 

It is also possible to train network outputs to become dependent; in this case 
the network would classify the pixel that is in the middle of the input pattern; 
only one network output may be 1, all the others are – 1. From preliminary 
experiments we observed that we lost in classification capability but won in 
spatial resolution of the generated map. Many of the features that were smeared 
out in case of independent outputs were pixel precise in case of dependent 
outputs. It is so because a feature that is represented by a single pixel will be 
detected on all patterns containing that pixel when independent outputs are used 
(hence the smearing) but will only be detected on one pattern when dependent 
outputs are used. 

For validating the network prediction capability we found a threshold for each 
output; when an output value is above the threshold, we say that corresponding 
feature is definitely in the input pattern and if it is below, we say it is not. 

To find the threshold, we feed the training set through the classifier and for 
each network output plot out two probability density graphs (Fig. 3): one shows 
the output value when feature is present in the network input and the other when 
the feature is not present in the network input. Next we plot out cumulative 
versions of the same graph and take the crossing point of the cumulative graphs 
as threshold for the output [8]. 

 
 
 

 
 
Fig. 3. Network output density functions (red, when feature is present and blue, when feature is not 
present) and corresponding cumulative distribution functions (dotted lines). 
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4.2. Map  generation 
 
The easiest way to generate a map would be to divide a selected image to a 

grid of 29 × 29 pixel patterns and feed each pattern into the classifier. In order to 
increase the map resolution, it is possible to divide the image so that the patterns 
overlap. The experiments were done by using 10 pixel steps, increasing the map 
resolution threefold in both directions. 

To increase the performance of the map creation procedure it is possible to 
integrate the map generation and path planning procedure by evaluating the 
confidence vectors as needed by the path planner. Each time the path planner 
needs the cost of an unevaluated area, the pattern of the area is requested and fed 
to artificial neural network. This avoids evaluating the whole aerial photograph 
because only the nodes actually used by path planner are evaluated. 

 
 

5. RESULTS 
 
We used two distinct areas for testing that are described in more detail in our 

previous article [8]. One area was from Tallinn outskirts and the other was a fen 
near Tallinn. Since we updated the terrain classifier input formatting, we have 
obtained new results. 

In the outskirts area after 21 epochs of training the network output MSE 
(Mean Squared Error) converged to 0.066. The rates of good classification for 
houses, roads, grass and debris were 99.73%, 99.80%, 99.57% and 99.20%, 
correspondingly. All features were classified correctly on 98.33% patterns (up 
from 74.9% from the previous experiment). 

In fen area it took 25 epochs of training before the network MSE converged to 
0.24 and rates of good classification for water, forest and roads were 92.83%, 
99.43% and 79.23%, correspondingly. The “road” tracks in the fen were full of 
water and even during hand labelling it was difficult to distinguish them from 
drainage canals so the detection rate was lower. All classes were correctly 
classified on 73.7% of the patterns (up from 55.5% from previous experiment on 
same area). 

To verify the path planning capability of the system, several experiments were 
made by using the aerial imagery from Estonian Land Board database. The 
feature category weights were chosen so that the path planner prefers roads and 
avoids water, houses, trees and debris (Figs. 4 to 6). 

 
 

6. SUMMARY 
 
The experiments show that our system is capable of extracting distinctive 

features from aerial data and of using them for path planning. The work is 
important   because   estimating  and   minimizing   energy   consumption  during  
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Fig. 4. Path planning through fen 1. 
 
 
 

 
 

Fig. 5. Path planning through fen 2. 
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Fig. 6. Path planning in suburban area. 
 
 

navigation is vital in mission critical tasks for battery powered UGVs. Estimating 
energy consumption allows us to predict if UGV is capable of completing the 
given mission. Our system does not rely on LiDAR, data allowing us to use 
smaller UAVs with passive sensors. 

In future we plan to carry out additional experiments to find optimal size for 
the artificial neural network and to further test the capabilities of the classifier. 
We also plan to integrate the system with UGV on-board navigation system and 
to implement real world tests with automatic terrain labelling for network 
training. 
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On välja töötatud adaptiivne süsteem aerofotode klassifitseerimiseks ja selle 

põhjal autonoomse roboti teekonna planeerimiseks. Süsteemi treenimiseks saab 
kasutada nimetatud roboti kogutud infot, tsükliline ületreenimine värskelt kogu-
tud andmetega tagab süsteemi kohanemisvõime muutuvates oludes. Töö võimal-
dab hinnata ja vähendada nimetatud roboti energiakulu missiooni vältel. 

 


