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Abstract. We study numerically the influence of the presence of a complex internal structure
of laminates, consisting of layers of different properties and variable thickness, on the dynamic
response of the material. The influence of the internal structure of laminate layers on the signal
propagation is demonstrated by several examples for periodic and double periodic laminates.
It is also discovered that the influence of the mutual position of layers with different internal
structure can be significant.
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1. INTRODUCTION

The behaviour of many materials used in engineering (e.g., metals, alloys,
granular materials, composites, liquid crystals, polycrystals) is often influenced by
the existing or emergent microstructure (e.g., phases in multiphase materials, voids,
microcracks, dislocation substructures, texture). In general, the components of
such a microstructure have different material properties, resulting in a macroscopic
material behaviour like in highly anisotropic and inhomogeneous materials.

Due to the complex structure of such media, wave propagation is accompanied
by reflection, refraction, diffraction and scattering phenomena that are difficult to
quantify [1]. Small-scale changes in a heterogeneous material’s microstructure can
have major effects in its macro-scale behaviour. For example, alloying elements,
nano-reinforcements and the crystalline structures of polymers all have profound
effects on the parental material’s macroscopic response [2]. Modelling macroscopic
mechanical properties of materials in relation to their substructure is a long-
standing problem in materials science [3].
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The development of new materials as well as the optimization of classical
materials requires modelling, more closely related to the substructure of the
materials under consideration. The diversity of possible situations, as far as the
geometry, the scale and the contrast of multiphase structures are concerned, is
huge. In dynamic problems, the role of the scale effects is significant. When
the wavelength of a travelling signal is comparable with the characteristic size
of heterogeneities, successive reflections and refractions of the local waves at the
interfaces lead to the dispersion and attenuation of the global wave field. Besides
the geometrical characteristics of multiphase materials, an important aspect is the
contrast between different constituent materials.

In order to model the mechanical behaviour of such a variety of heterogeneous
materials, the substructure has to be simplified. As a first approximation, much
useful information can be inferred from the analysis of wave propagation in a body
where the periodic arrangement of layers of different materials is confined within a
finite spatial domain [3].

In the framework of the general study of wave propagation in solids with
microstructure [4], the influence of multiple reflections at internal interfaces on
wave propagation in layered composites of two different materials was investigated
numerically [5], and the corresponding model of microstructure was validated [6].

Usually, real materials contain more than one substructure. It is heuristically
obvious that each substructure gives its own contribution to the total material
behaviour. In order to construct an appropriate model of response of a material
with more refined internal structures, the first step is understanding the behaviour
of the material with at least two different substructures.

The aim of this paper is to investigate the influence of the presence of a
more complex internal structure of laminates on the dynamic response of the
material. For this purpose, we use numerical simulations of one-dimensional wave
propagation in materials with several compositions of two substructures.

The modification of the wave-propagation algorithm introduced in [7] is applied
as a basic tool of numerical simulations due to its physical soundness, accuracy and
thermodynamic consistency [8].

2. GOVERNING EQUATIONS

The simplest example of heterogeneous media is a periodic laminate composed
of materials with different properties. One-dimensional wave propagation in
the framework of linear elasticity is governed by the conservation of linear
momentum [9]

ρ(x)
∂v

∂t
− ∂σ

∂x
= 0, (1)

and the kinematic compatibility condition

∂ε

∂t
=

∂v

∂x
. (2)
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Here t is time, x is space variable, the particle velocity v = ut is the time derivative
of the displacement u, the one-dimensional strain ε = ux is the space derivative
of the displacement, σ is the Cauchy stress and ρ is the material density. The
compatibility condition (2) follows immediately from the definitions of the strain
and the particle velocity.

Equations (1) and (2) contain three unknowns: v, σ and ε. The closure of
this system is achieved by a constitutive relation, which in the simplest case is the
Hooke’s law

σ = ρ(x)c2(x) ε, (3)

where c(x) is the corresponding longitudinal wave velocity. The indicated explicit
dependence on the location in space x means that the medium is materially
inhomogeneous. The resulting system of equations (1)–(3) is solved numerically.

3. NUMERICAL SIMULATION

The cross-differentiation of Eqs. (1) and (2), after Hook’s law (Eq. (3)) has
been applied, leads to the classical variable-coefficient wave equation. The solution
of this wave equation is well-known if the coefficients, characterizing spatial
variations of the background environment (here interpreted as the properties of
the material), are smooth. These variations and thus the coefficients of the wave
equation obviously are not smooth near discontinuities in the material parameters.
Therefore, one cannot employ standard methods for solving such equations that
often fail completely if the parameters vary drastically on the grid size.

By contrast, the recently developed high-resolution wave-propagation
algorithm [10] has been found well suited for the modelling of wave propagation
in rapidly-varying heterogeneous media [11]. Within this algorithm, every dis-
continuity in parameters is accounted for by solving the Riemann problem at each
interface between discrete elements. As a result, the reflection and transmission of
waves at each interface are handled automatically for a wide range of parameters
of the inhomogeneities.

The general idea of methods with such abilities is the following. The division
of a body into a finite number of computational cells is accompanied by the
description of all fields inside the cells as well as by accounting for the interaction
between neighbouring cells. By doing so it is possible to approximate the required
fields inside the cells in a smooth manner and simultaneously describe the dis-
continuities of the fields at the boundaries between cells. This way of interaction
leads to the appearance of certain excess quantities, which represent the difference
between the exact and approximate values of the fields. The interactions between
neighbouring cells are described by means of fluxes at the boundaries of the cells.
These fluxes correspond to the excess quantities, which can be calculated by means
of jump relations at the boundaries between cells.

High-resolution finite-volume methods, capable of handling discontinuities in
such a manner, were originally developed for capturing shock waves in solutions
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to non-linear systems of conservation laws, such as the Euler equations of gas
dynamics [7]. However, they are also well suited to solving non-linear wave
propagation problems in heterogeneous media containing many sharp interfaces.
Recently, a wave-propagation algorithm of this type was successfully applied to
one-dimensional non-linear elastic waves in a heterogeneous periodic medium
consisting of alternating thin layers of two different materials [12,13].

An improved composite wave propagation scheme, where a Godunov step
is performed after several second-order Lax–Wendroff steps, was successfully
applied for the two-dimensional thermoelastic wave propagation in media with
rapidly varying properties [14−16].

4. RESULTS OF NUMERICAL SIMULATION

To investigate the influence of two substructures on the material behaviour, the
propagation of a pulse in a one-dimensional medium, which can be interpreted as
an elastic bar, is considered. This bar is assumed homogeneous except of a region
of length l in the middle of the bar, which contains periodically alternating layers of
thickness d (Fig. 1). Total length of the bar L is equal to 5000∆x. We set the length
l of the inhomogeneous domain equal to 900∆x for all numerical simulations (∆x
is the constant space step used in simulations).

The density and the longitudinal velocity in the bar are chosen as ρ =
4510 kg/m3 and c = 5240 m/s, respectively. The shape of the pulse is formed by an
excitation of the strain at the left boundary for a limited time period (0 < t < λ∆t)

ux(0, t) = (1 + cos(2π(t− λ

2
∆t)/λ), (4)

where λ is the pulse length. After that the strain is equal to zero. Consistency
condition for velocity is also used. At the right boundary we apply non-reflective
boundary conditions. The arrow at the left end of the bar in Fig. 1 shows the
direction of the pulse propagation. Numerical simulations were performed for

Fig. 1. Geometry of the problem.
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three different lengths of a pulse: λ = 30∆x, 90∆x and 180∆x for each analysed
substructure composition.

We consider several substructure compositions within the inhomogeneous
domain (Fig. 2). We assume that the material of the bar itself is the hardest and
of the highest density, and will call it “hard” material in what follows. The sub-
structure may contain two different materials. The one with the lowest density
and longitudinal velocity (ρ = 2703 kg/m3 and c = 5020 m/s, respectively)
we call “soft” and the one with the intermediate parameters (ρ = 3603 kg/m3

and c = 5100 m/s) we call “intermediate” material. The smallest scale of the
substructure – the minimum size of each sublayer – is set equal to 30∆x.

The results of propagation of the pulses through different compositions of
the substructure are compared with the behaviour of the reference pulses, the
propagation of which is calculated for a homogeneous bar of the “hard” material.
The resulting pulse is recorded at 4600 time steps.

We start the analysis from a simple periodic composition of two materials
(“hard” and “soft”) with a fixed size of layers d = 90∆x. This composition
is represented as case (a) in Fig. 2. The results of numerical simulations of the
pulse propagation (Fig. 3) demonstrate that the shape of the resulting pulse is
considerably modified depending on the length of the initial pulse. The stress is
normalized by the amplitude of the initial pulse. The initial pulse is separated into
two leading pulses. The tail of the signal contains a negative disturbance. These
results are qualitatively similar to earlier studies of pulse propagation in similar
layered medium [5].
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Fig. 2. Substructure compositions. The bold line describes the relative density of the material.
The light grey layers represent the material of the bar (ρ = 4510 kg/m3, c = 5240 m/s),
shaded layers indicate the “intermediate” substructure material (ρ = 3603 kg/m3, c =
5100 m/s) and the dark grey layers – the “soft” substructure material (ρ = 2703 kg/m3

and c = 5020 m/s).
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Fig. 3. Pulse shape at 4600 time steps for “hard–soft” structure laminate (d = 90∆x, case (a)
in Fig. 2).

A decrease in the size of periodically alternating “hard” and “soft” layers d
to 30∆x under otherwise identical conditions of the properties of the medium,
pulses and the numerical simulations (case (b) in Fig. 2) leads to a considerable
response of the pulses to the substructure (Fig. 4). The propagation of the longest
pulse (λ = 180∆x) shows the lowest rate of distortions: the initial positive pulse
almost keeps its shape but relatively small and smooth disturbances are created.
For the intermediate length of the pulse (λ = 90∆x) quite a complex transition of
the pulse into a multi-peaked positive signal, consisting of a sequence of several
overlapping positive pulses, takes place. This process is accompanied by excitation
of an irregular but again mostly smooth tail. The propagation of the shortest pulse
(λ = 30∆x) over this substructure leads to the formation of two clearly separated
leading pulses. In contrast to the previous case, the first leading pulse is now
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Fig. 4. Pulse shape at 4600 time steps for “hard–soft” structure laminate (d = 30∆x, case (b)
in Fig. 2).

smaller than the second one. These results show that the dispersion is stronger
if the wavelength is comparable with the size of the inhomogeneity.

Case (c) in Fig. 2 can be interpreted as a combination of the previous two cases.
The bar contains here a more complex substructure consisting of a succession of
regions that involve two thin layers of soft material separated by a similar layer
of hard material (d = 30∆x for each thin layer as in case (b)) alternating with
regions equivalent to a thicker layer (d = 90∆x) of the “hard” bar material
as in case (a). Figure 5 shows that the longest pulse (λ = 180∆x) is clearly
less distorted than in the case of substructure with very thin layers whereas the
distortions are more pronounced than in the case with thick internally homogeneous
sublayers. The structure of the leading pulse basically survives the interaction
with the substructure. Shorter pulses, however, show separation into two leading
pulses of almost equal length and height. This example shows that even relatively
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Fig. 5. Pulse shape at 4600 time steps for mixed “hard–soft” structure laminate (d = 30∆x
and 90∆x, case (c) in Fig. 2).

small changes in the substructure (in this case equivalent to shifting the layers with
internal fine structure to some distance from each other) leads to quite significant
effects in pulse propagation.

The reaction of the signal to the presence of substructure is even more
complicated if the regions containing three thin layers of different material are
formed from materials of different properties.

The simplest way to introduce such a second substructure is to replace the thin
layer of “hard” material between the layers of “soft” material by an equally thin
layer of “intermediate” material. The composition of the inhomogeneous domain
then corresponds to case (d) in Fig. 2. The influence of the second substructure
on the pulse propagation (Fig. 6) is evident, compared, for example, with the
reaction of the pulse propagation to change in the material composition from
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Fig. 6. Pulse shape at 4600 time steps for “hard–soft–intermediate–soft” double structure
laminate (d = 30∆x and 90∆x, case (d) in Fig. 2).

case (b) to case (c). Only the final shape of the longest pulse is similar to that
of the previous case. For the shorter pulses, the first pulse of the two leading ones
is now higher than the second one in contrast to the previous case. Quite large
deviations from the above cases become evident for the pulse with a duration of
180∆x that contains now strong oscillations in the tail. Therefore, the introduction
of the second substructure even in quite a limited manner leads to clearly observable
changes in the dynamic response of the pulses to the structure of the laminate.

Completely different results are obtained for the inverse order of “soft” and
“intermediate” substructure layers (case (e) in Fig. 2). Now we have the periodic
composition of two thin layers of “intermediate” and one thin layer “soft” material
(d = 30∆x) alternating by thick layers of “hard” material (d = 90∆x). For all
pulse lengths (λ = 30∆x, 90∆x and 180∆x) we observe only one leading pulse
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Fig. 7. Pulse shape at 4600 time steps for “hard–intermediate–soft–intermediate” double
structure laminate (d = 30∆x and 90∆x, case (e) in Fig. 2).

(Fig. 7). Interestingly, the distortions of the signal propagation are relatively small
and the initial shape of the pulse is clearly evident. As a consequence, the leading
pulse is the highest one for all lengths of the initial pulse. This feature demonstrates
that not only the presence of the second-level substructure influences the material
behaviour, but also the relative position of both substructures is significant.

In our next composition of the inhomogeneous domain we set the periodic
alternating thin layers of two substructures of “soft” and “intermediate” materials
with one thin layer of “hard” material d = 30∆x. This composition corresponds to
the case (f) in Fig. 2. The results of numerical simulations of the pulse propagation
for this composition (Fig. 8) are very similar to the case of the simple periodic
“hard–soft” substructure with d = 30∆x shown in Fig. 4. The influence of
the second substructure can be recognized, as expected, by somewhat smaller
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Fig. 8. Pulse shape at 4600 time steps for “hard–soft–hard–intermediate” double structure
laminate (d = 30∆x, case (f) in Fig. 2).

distortions of the initial pulse for all three simulations.
In a variation of case (d) in Fig. 2, we replace the position of the “intermediate”

material thin layer as in case (g). We set it in the centre of a thick “hard” material
layer instead of the “soft” material layer. Here we alternate the thick layer of “soft”
material (d = 90∆x) with a combination of two thin layers of “hard” material with
one thin layer of “intermediate” material (d = 30∆x). Corresponding results of
numerical simulations (Fig. 9) are similar to those in Fig. 6, only the amplitudes of
distortions of resulting pulses are slightly changed.

The last composition considered in this paper repeats the very first composition
of simple thick periodic “hard–soft” composition (Fig. 2, case (a)), but every
second “soft” layer is replaced by the “intermediate” material (case (h)). In
this composition the thick “hard” material layers are alternating with thick
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Fig. 9. Pulse shape at 4600 time steps for “hard–soft–hard–intermediate–hard” double
structure laminate (d = 30∆x and 90∆x, case (g) in Fig. 2).

“intermediate” material layers and thick “soft” layers (d = 90∆x). The observed
results (Fig. 10) are very similar to those obtained for the first case with only one
substructure (Fig. 4). The influence of the second substructure in terms of the
presence of layers with a smaller difference of their physical properties from the
bar material becomes evident as somewhat better match of the final shape of the
pulses with the reference pulses.
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Fig. 10. Pulse shape at 4600 time steps for “hard–intermediate–hard–soft” double structure
laminate (d = 90∆x, case (h) in Fig. 2).

5. CONCLUSIONS

It is not unexpected that the introduction of a more complex structure to
laminate materials (called second substructure here) affects the dynamic response
of the signal propagation through the laminate. The presented results of numerical
simulations confirm the importance of a second substructure to the behaviour of
pulses. A significant outcome from the presented numerical simulations is that not
only the presence of the second substructure, but also its internal geometry and the
mutual distribution of the hard and soft layers is significant. This influence of the
second substructure should be taken into account by further developments in the
modelling of the dynamic response of microstructured solids.
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Lainelevi keeruka stuktuuriga laminaatides
Mihhail Berezovski, Arkadi Berezovski, Tarmo Soomere ja Bert Viikmäe

On analüüsitud lainelevi omadusi keeruka struktuuriga laminaatides, kus erine-
vatel kihtidel võib olla erinev paksus ja sisemine struktuur, kasutades selleks posi-
tiivseid impulsse. Kihtide sisestruktuuri mõju signaali levikule on demonstreeritud
mitmetes erineva paksuse ja sisemiste kihtide asetusega materjalides. On näidatud,
et signaali mõjutab märgatavalt isegi erinevate omadustega kihtide omavaheline
järjestus.
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