
 56

Estonian Journal of Engineering, 2010, 16, 1, 56–77 doi: 10.3176/eng.2010.1.07

Application of high-level decision diagrams

for simulation-based verification tasks

Maksim Jenihhin, Jaan Raik, Anton Chepurov and Raimund Ubar

Department of Computer Engineering, Tallinn University of Technology, Raja 15, 12618 Tallinn,
Estonia; {maksim, jaan, anchep, raiub}@pld.ttu.ee

Received 28 October 2009, in revised form 20 January 2010

Abstract. This paper describes the advantages of the application of a system representation model,
called High-Level Decision Diagrams (HLDDs), for hardware functional verification. Two tasks of
simulation-based verification, considered in this paper, are assertion checking and code coverage
analysis. Assertion checking employs temporal extension of an existing HLDD model aimed at
supporting temporal properties, expressed in Property Specification Language (PSL). The described
approach to code coverage analysis provides for more accurate results than traditional VHDL
code coverage methods. Experimental results show the feasibility and efficiency of the HLDDs-
based approaches.

Key words: hardware functional verification, decision diagrams, assertion checking, code
coverage, PSL.

1. INTRODUCTION

Traditional design representation models are based on HDLs (e.g. VHDL or

Verilog). However, a number of drawbacks are related to the application of
HDLs-based models in verification.

The awkwardness and usually even inability of HDLs to represent complex
temporal assertions has caused introduction of languages, especially dedicated
for this purpose, such as the Property Specification Language (PSL). The latter
one in turn is not always supported by design simulation tools or this support
may be expensive. The attempts to unify design implementation and its
properties’ representations normally result in creation of large hardware checkers
that assume significant restrictions on the initial assertion functionality. At the
same time a comprehensive verification coverage measurement, based on the
HDL model, may require complicated HDL code manipulations, resulting in
inefficient resource consumption.

 57

In this paper we address the main simulation-based hardware verification
issues that are speed and accuracy of the verification process. We target these
issues by exploiting the advantages of the HLDD-based modelling formalism.
The main contribution of this paper is the combination of assertion checking and
coverage analysis approaches into a single homogeneous HLDD-based dynamic
functional verification flow. Previous research, including [1], has shown that
HLDDs are an efficient model for design simulation and convenient for diagnosis
and debug.

The paper is organized as follows. Section 2 defines the HLDD graph model,
discusses its compactness types and describes the HLDD-based simulation
process. HLDD-based structural coverage analysis is discussed in Section 3. Here
the most popular coverage metrics such as statement, branch and condition are
considered. Section 4 discusses application of the HLDD for assertion checking.
For this purpose a brief description of IEEE std PSL as a language for assertions
entry is provided. Further, the main issues of the approach itself, such as
temporal extension for HLDD (THLDD), hierarchical creation of THLDDs and
the THLDD assertion checking process, are discussed. Section 5 provides the
experimental results, and finally conclusions are drawn.

2. HIGH-LEVEL DECISION DIAGRAMS

Various kinds of Decision Diagrams (DD) have been applied for design

verification and test for about two decades. Reduced Ordered Binary Decision
Diagrams (BDD) [2] as canonical forms of Boolean functions have their
application in equivalence checking and in symbolic model checking.

In this paper we consider a decision diagram representation called High-Level
Decision Diagrams (HLDDs) that can be considered as a generalization of BDD.
There exist a number of other word-level decision diagrams such as multi-
terminal DDs (MTDDs) [3], K*BMDs [4] and ADDs [5]. However, in MTDDs
the non-terminal nodes hold Boolean variables only. The K*BMDs, where
additive and multiplicative weights label the edges, are useful for compact
canonical representation of functions on integers (especially wide integers). The
main goal of HLDD representations, described in this paper, is not canonicity,
but ease of simulation. The principal difference between HLDDs and ADDs lies
in the fact that ADDs edges are not labelled with activating values. In HLDDs
the selection of a node activates a path through the diagram, which derives the
needed value assignments for variables.

The HLDDs can be used for representing different abstraction levels from
RTL (Register-Transfer Level) to TLM (Transaction Level Modelling) and the
behavioural level. HLDDs have proven to be an efficient model for simulation
and diagnosis since they provide for a fast evaluation by graph traversal and for
easy identification of cause–effect relationships [1]. The HLDD model itself is
not a contribution of this paper.

 58

2.1. Definition of the HLDD modelling formalism

In the following we give a formal definition of High-Level Decision

Diagrams. Let us denote a discrete function (),y f x= where 1(, ,)ny y y= K and

1(, ,)mx x x= K are vectors defined on 1 mX X X= × ×K with values

1 ,ny Y Y Y∈ = × ×K and both, the domain X and the range Y are finite sets of
values. The values of variables may be Boolean, Boolean vectors or integers.

Definition 1. A HLDD, representing a discrete function (),y f x= is a directed
acyclic labelled graph that can be defined as a quadruple (, , ,),yG M E Z Γ=
where M is a finite set of vertices (referred to as nodes), E is a finite set of
edges, Z is a function, which defines the variables labelling the nodes, and Γ is
a function on .E

The function ()iZ m returns the variable ,kx which is labelling node .im
Each node of a HLDD is labelled with a variable. In special cases, nodes can be
labelled with constants or algebraic expressions. An edge e E∈ of a HLDD is an
ordered pair 2

1 2(,) ,e m m E= ∈ where 2E is the set of all the possible ordered
pairs in set .E Γ is a function on ,E representing the activating conditions of
the edges for the simulating procedures. The value of ()eΓ is a subset of the
domain kX of the variable ,kx where (,)i je m m= and () .i kZ m x= It is required
that { () | (,) }i i jPm e e m m EΓ= = ∈ is a partition of the set .kX Figure 1 presents
a HLDD for a discrete function 1 2 3 4(, , ,).y f x x x x= HLDD has only one
starting node (root node) 0 ,m for which there are no preceding nodes. The nodes
that have no successor nodes are referred to as terminal nodes .termM M∈

HLDD models can be used for representing digital systems. In such models,
the non-terminal nodes correspond to conditions or to control signals, and the
terminal nodes represent data operations (functional units). Register transfers and
constant assignments are treated as special cases of operations. When repre-
senting systems by decision diagram models, in the general case, a network of
HLDDs rather than a single HLDD is required. During the simulation in HLDD
systems, the values of some variables, labelling the nodes of a HLDD, are
calculated by other HLDDs of the system.

Fig. 1. A high-level decision diagram representing a function y = f (x1, x2, x3, x4).

Gy = (M, E, Z, Γ);
M = {m0, m1, m2, m3, m4};
E = {e1, e2, e3, e4, e5}; e1 = (m0, m1),
e2 = (m0, m3), e3 = (m0, m4),
e4 = (m1, m2), e5 = (m1, m3);
Z(m0) = Z(m4) = x2, Z(m1) = x3,
Z(m2) = x4, Z(m3) = x1;
Γ(e1) = {0}, Γ(e2) = {1, 2, 3},
Γ(e3) = {4, 5, 6, 7}, Γ(e4) = {2},
Γ(e5) = {0, 1, 3}.

 59

 (a) (b) (c)

Fig. 2. A behavioural VHDL (a), its RTL (b) and HLDD (c).

Consider the example of HLDD representation of a VHDL design, containing

feedback loops shown in Fig. 2. Figure 2a presents a behavioural description of
the greatest common divisor algorithm, which contains variable assignments, a
loop construct (WHILE) and an if-statement. Figure 2b provides an RTL
implementation of the algorithm. Figure 2c shows the HLDD representation of
the RTL, given in Fig. 2b. It is a system of HLDDs, where for each HDL variable
a separate diagram corresponds.

Different from the well-known Reduced Ordered BDD models, which have
worst-case exponential space requirements, HLDD size scales well with respect
to the size of the RTL code. Let n be the number of processes in the RTL code, v
be the average number of variables/signals inside a process and c be the average
number of conditional branches in a process. In the worst case, the number of
nodes in the HLDD model will be equal to nvc. Note, that the complexity of
HLDDs is just O(n) with respect to the number of processes in the code.

Figure 3 presents a functional segment of VHDL description of an example
design CovEx2 and its corresponding HLDD representation. There are three
columns with numerical values to the left from the VHDL code. The first column
Ln. is basically the line number, while the other two are explained further. The
variables’ names in CovEx2 follow the following unification rules: {V – an
output variable; cS – a conditional statement; D – a decision; T – a terminal node;
C – a condition}. The nodes and edges in HLDD representation are also
enumerated. This enumeration is used for explanatory purposes and will be
discussed in Section 3.

if res = 1 then state:=s0;
else
 case state
 when s0 =>
 a:=in1; b:=in2; state:=s1;
 when s1=>

 if a≠b then state:=s2;
 else state:=s5; endif;
 when s2=>
 if a>b then state:=s3;
 else state:=s4; endif;
 when s3=>
 a:=a-b; state:=s1;
 when s4=>
 b:=b-a; state:=s1;
 when s5=>
 state:=s5;
 end case
end if

state
res

0
state

s0,s3,s4

s5

s1

a=b

s5

s1

s0

1

s2

T

F

a>b s3
T

F

s4

s2

a
state

s0

a-b

in1

s5

a
ε

b
state

s0

b-a

in2

s4

b
ε

a := in1;
b := in2;
while (a ≠ b)
if (a > b) then
 a := a – b;
else
 b := b – a;
end if;
end while;

 60

Fig. 3. Example design CovEx2 representation by VHDL (functional segment) and HLDDs.

2.2. Representation types of the HLDD model

We distinguish three types of HLDD representations according to their com-
pactness and with consideration of the HLDD reduction rules. These rules are
similar to the reduction rules for BDDs, presented in [2] and can be generalized as
follows:
HLDD reduction rule 1: Eliminate all the redundant nodes whose all edges point to

an equivalent sub-graph.
HLDD reduction rule 2: Share all the equivalent sub-graphs.

The three representation types in the increasing order of compactness are:
• Full tree HLDD contains all control flow branches of the design. This type of

representation includes a lot of redundancy. They introduce large space
requirements and relatively slow simulation times.

• Reduced HLDD is obtained by application of the HLDD reduction rule 1 to
the full tree representation. This HLDD representation is still a tree-graph.
This type of representation combines the advantages of full-tree representa-
tion and minimized representation.

• Minimized HLDD is obtained by application of both HLDD reduction rules 1
and 2 to the full tree representation. This representation is the most compact
of the three.

Ln. Stm. Dcn.
 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
37
36
37

1*

2*

3
4

5

6

7
8

9

10

11
12

13

14

15
16

17

18

1*

2*

3

4

5*

6

7

8*

9

10

11*

12

13

if (cS1_C1 or cS1_C2)
then
 case cS2_C is
 when cS2_C_W1 =>
 V2 <= V2_T1;
 if (cS3_C) -- where, cS3_C = cS6_C
 then
 V1 <= V1_T2;
 else
 V1 <= V1_T1;
 end if;
 when cS2_C_W2 =>
 V2 <= V2_T1;
 if (cS4_C1 and ((not cS4_C2) or cS4_C3))
 then
 V1 <= V1_T3;
 else
 V1 <= V1_T1;
 end if;
 when cS2_C_W3 =>
 V1 <= V1;
 if (cS5_C1 and cS5_C1)
 then
 V2 <= V2_T2;
 else
 V2 <= V2_T1;
 end if;
 end case;
else
 V2 <= V2_T2;
 if (cS6_C) -- where, cS3_C = cS6_C
 then
 V1 <= V1_T2;
 else
 V1 <= V1_T1;
 end if;
end if; VHDL HLDD

cS1_D1 cS2_D1

cS2_D2

cS3_D1

cS3_D2

cS1_D2

cS4_D1

cS4_D2

cS1 cS2 cS3 V1_T2

V1_T1

cS4 V1_T3

V1_T1

V1

cS6_D1

cS6_D2

cS6 V1_T2

V1_T1

11 3

7

21

4

651

12111

13

11 21 5

6

9

10

17

18

8

16

4

cS2_D3
V1_T1

81

11

cS1_D1 cS2_D1

cS2_D3 cS5_D1

cS5_D2

cS1_D2

cS1 cS2 V2_T1

cS5 V2_T2

V2_T1

V2_T2

V2

82

10

112

9

2212

3

13

14

15

12

2212

cS2_D2
V2_T1

52

7

 61

Different design verification tasks may require different HLDD representation
types. For example, as it will be shown in Section 3, the compactness of HLDD
representation has significant impact on the accuracy of the verification coverage
analysis.

The HLDD representation, used in Fig. 3, was of the reduced type. Figures 4
and 5 represent CovEx2 design by full tree and minimized HLDDs, respectively.

2.3. Simulation using HLDDs

In [1], we have implemented an algorithm, supporting both RTL and

behavioural design abstraction levels. Algorithm 1 presents the HLDD-based
simulation engine for RTL, behavioural and mixed HDL description styles.

Simulation on decision diagrams takes place as follows. Consider a situation,
where all the node variables are fixed to some value. For each non-terminal node

,term
im M∉ according to the value kv of the variable (),k ix Z m= certain output

edge (,),i je m m= ()kv eΓ∈ will be chosen, which enters into its corresponding
successor node .jm Let us call such connections activated edges under the given
values and denote them by .kv

im Succeeding each other, activated edges form in
turn activated paths. For each combination of values of all the node variables
there always exists a corresponding activated path from the root node to some

Fig. 4. A full tree HLDD representation for CovEx2 design.

Fig. 5. A mimized HLDD representation for CovEx2 design.

cS1_D1

cS2_D1

cS2_D2

cS(3/6)_D1

cS(3/6)_D2cS1_D2

cS4_D1

cS4_D2

cS1 cS2

cS(3/6)

V1_T2

cS4 V1_T3
V1

11

3,12

7

111

4,13

651

21

11 21

5,17

98

4,16

cS2_D3
V1_T1

81

6,10,11,18

cS1_D1 cS2_D1

cS2_D3

cS1_D2

cS1 cS2

cS5

V2_T2

V2

82

10

9

2212

13,15

2212

cS2_D2
V2_T1

52

3,7,14

cS5_D2
12

cS5_D1

112

11d

11d

cS1_D1 cS2_D1

cS2_D2

cS3_D1

cS3_D2

cS1_D2

cS4_D1

cS4_D2

cS1 cS2 cS3 V1_T2

V1_T1

cS4 V1_T3

V1_T1

V1

cS6_D1

cS6_D2

cS6 V1_T2

V1_T1

11 31

71

21

41

6151

121111

131

11 21 5

6

9

10

17

18

81

161

41

cS2_D3 cS5_D1

cS5_D2

cS5 V1_T1

V1_T1

81

101

91

121

7d

7d

15d

15d

3d

3d

cS1_D1 cS2_D1

cS2_D2

cS3_D1

cS3_D2

cS1_D2

cS4_D1

cS4_D2

cS1 cS2 cS3 V2_T1

V2_T1

cS4 V2_T1

V2_T1

V2

cS6_D1

cS6_D2

cS6 V2_T2

V2_T2

12 32

72

22

42

6252

122112

132

12 22

82

162

42

cS2_D3 cS5_D1

cS5_D2

cS5 V2_T2

V2_T1

82

102

92

13

14

122

 62

terminal node. We refer to this path as the main activated path. The simulated
value of variable, represented by the HLDD, will be the value of the variable
labelling the terminal node of the main activated path.

Algorithm 1.
 SimulateHLDD()
 For each diagram G in the model
 mCurrent = m0
 Let xCurrent be the variable labeling mCurrent
 While mCurrent is not a terminal node
 If xCurrent is clocked or its DD is ranked after G then
 Value = previous time-step value of xCurrent
 Else
 Value = present time-step value of xCurrent
 End if
 mCurrent = mCurrent

Value

 End while
 Assign xG = xCurrent
 End for
 End SimulateHLDD

In the RTL style, the algorithm takes the previous time step value of variable
,jx labelling a node ,im if jx represents a clocked variable in the corresponding

HDL. Otherwise, the present value of jx will be used. In the case of behavioural
HDL coding style, HLDDs are generated and ranked in a specific order to ensure
causality. For variables ,jx labelling HLDD nodes the previous time step value
is used if the HLDD calculating jx is ranked after the current decision diagram.
Otherwise, the present time step value will be used.

Let us explain the HLDD simulation process on the decision diagram
example, presented in Fig. 1. Assuming that variable 2x is equal to 2, a path is
activated from node 0m (the root node) to a terminal node 3,m labelled with 1.x
Let the value of variable 1x be 4, thus, 1 4.y x= = Note, that this type of
simulation is event-driven since we have to simulate only those nodes that are
traversed by the main activated path.

3. HLDD-BASED COVERAGE ANALYSIS

Hardware verification coverage analysis is aimed to estimate quality and

completeness of the performed verification. It plays a key role in simulation-
based verification and helps to find an answer to the important yet sophisticated
question of when the design is verified enough. The main focus in this paper is on
the structural coverage (code coverage) for simulation-based verification as the
most widely used in practice. This section describes how a number of traditional
code coverage metrics [6,7] can be analysed, based on the HLDD model.

 63

3.1. Statement coverage analysis

The statement coverage is the ratio of statements, executed during simulation,

to the total number of statements under the given set of stimuli.
The idea of statement coverage representation on HLDDs was proposed in [8]

and developed further in [9]. The statement coverage metric has a straightforward
mapping to HLDD-based coverage. It maps directly to the ratio of nodes mCurrent,
traversed during the HLDD simulation presented in Algorithm 1 (Sub-
section 2.3), to the total number of the HLDD nodes in the DUV’s (Design Under
Verification) representation. The appropriate type of HLDD representation for
the analysis of both, statement and branch coverage metrics, is the reduced one.
The variations in the analysis, caused by different HLDD representation types,
are discussed further.

Let us consider the VHDL description of the CovEx2 design, provided in
Fig. 3. The numbers in the second column (Stm.) correspond to the lines with
statements (both conditional and assignment). The 20 HLDD nodes of the two
graphs in the same figure correspond to the 18 statements of the VHDL segment.
Covering all nodes in the HLDD model (i.e. full HLDD node coverage)
corresponds to covering all statements in the respective HDL (100% statement
coverage). However, the opposite is not true. HLDD node coverage is slightly
more stringent than HDL statement coverage. Please note that some of the HDL
statements have duplicated representation by the HLDD nodes. This is due to the
fact that HLDD diagrams are normally generated for each data variable
separately. Please consider statements 1 and 2 with asterisk ‘*’ in VHDL
representation and additional indexes in HLDD (Fig. 3). They are represented
twice by the nodes of both variables V1 and V2 graphs, and therefore there are 20
HLDD nodes in total.

The fact that HLDD node coverage is slightly more stringent than HDL
statement coverage is caused by their property to better represent the actual
structure of the design. For example, if one statement in a design description by
VHDL can be accessed by several execution paths, it will be represented by a
number of nodes (or sub-graphs) in the corresponding graph when reduced, or
full-tree HLDD representations are used.

3.2. Branch coverage analysis

The branch coverage metric shows the ratio of branches in the control flow

graph of the code that are traversed under the given set of stimuli. This metric is
also known as decision coverage, especially in software testing [7], and
arc coverage. In a typical application of branch coverage measurement, the
number of every decision’s hits is counted. Note, that the full branch coverage
comprises full statement coverage.

Similar to the statement coverage, branch coverage also has very clear
representation in the HLDD model (also initially proposed in [8] and developed

 64

further in [9]). It is the ratio of every edge eactive, activated in the simulation
process, presented by Algorithm 1 (Subsection 2.3) to the total number of edges
in the corresponding HLDD representation of the DUV.

Let us consider the VHDL segment in Fig. 3. Here, the third column (Dcn.)
numbers all 13 branches (aka decisions) of the code. The edges in the HLDD
graphs, provided in Fig. 3, represent these branches and are marked by the
corresponding numbers (underlined). Covering all the edges in a HLDD model
(i.e. full HLDD edge coverage) corresponds to covering all branches in the
respective HDL. However, similarly to the previously discussed statement on
coverage mapping, here the opposite is also not true and HLDD edge coverage is
slightly more stringent than HDL branch coverage.

Please note that some of the HDL branches also have duplicated repre-
sentation by the HLDD edges. This is due to the same reason as with HLDD
nodes. In Fig. 3 they are marked by ‘*’ and by additional subscript indexes.

The HLDD-based approaches for statement and branch coverage metrics can
further be extended for other metrics of structural verification coverage such as
state coverage (aka FSM coverage), data flow coverage and others. In the first
case the graph or graphs for the state variable should be analysed. The second
one would require strict HLDD model partitioning by the variables sub-graphs
and would map to the coverage of all single paths from terminal nodes to the root
nodes separately in all variables’ HLDD sub-graphs.

3.3. Condition coverage analysis

Condition coverage metric reports all cases of each Boolean sub-expression,

separated by logical operators or and and; in a conditional statement it causes the
complete conditional statement to evaluate the decisions (e.g. ‘true’ or ‘false’
values) under the given set of stimuli. It differs from the branch coverage by the
fact that in the branch coverage only the final decision, determining the branch, is
taken into account. If we have n conditions, joined by logical and operators in a
logical expression of a conditional statement, it means that the probability of
evaluating the statement to the decision ‘true’ is 1/2n (considering pure random
stimuli for the condition values). Calculation of the condition coverage, based on
HDL representation, is a sophisticated multi-step process. However, the condi-
tion coverage metric allows discovering information about many corner cases of
the DUV.

In this section we discuss an approach for condition coverage metric analysis,
based on the HLDD model. The approach is based on a hierarchical DUV repre-
sentation, where the conditional statements with complex logical expressions
(normally represented by single nodes in HLDD graphs) are expanded into
separate HLDD graphs.

Let us consider the example design CovEx2, provided in Fig. 3. It contains the
following 6 conditional statements:

 65

cS1: if (cS1_C1 or cS1_C2) then cS1_D1 else cS1_D2;

cS2: case (cS2_C) when cS2_C_W1: cS2_D1;

 when cS2_C_W2: cS2_D2;

 when cS2_C_W3: cS2_D3;

cS3: if (cS3_C) then cS3_D1 else cS3_D2; -- where, cS3_C = cS6_C

cS4: if (cS4_C1 and ((not cS5_C2) or cS5_C3))then cS4_D1 else cS4_D2;

cS5: if (cS5_C1 and cS5_C2) then cS5_D1 else cS5_D2;

cS6: if (cS6_C) then cS6_D1 else cS6_D2; -- where, cS3_C = cS6_C

The HLDD expansion graphs for these conditional statements are provided in

Fig. 6. Here the terminal nodes are marked by background colors according to
different decisions for better readability.

These 6 expansion graphs can be considered as sub-graphs, representing
“virtual” variables (because they are not real variables of the CovEx2 VHDL
representation) cS1–cS6. Thus together with the two HLDD graphs for variables
V1 and V2 (Fig. 3) these sub-graphs compose hierarchical HLDD representation
of the design (altogether 8 graphs). Here we choose graphs from Fig. 3, because
accurate condition coverage analysis requires reduced type of HLDDs.

The full condition coverage metric maps to the full coverage of terminal
nodes of the conditional statements expansion graphs during the complete

Fig. 6. Expansion graphs for conditional statements of CovEx2.

T

F

cS1_C1

cS1_D2

cS1
cS1_C2

cS1_C2
T

cS1_D1
F

cS1_D1

cS1_D1
F

T

T
cS4_C1

cS4
cS4_C2

F

cS4_D1
T

T

F

cS5_C1

cS5_D2

cS5
cS5_C2

cS5_C2
T

cS5_D2
F

cS5_D1

cS5_D2
F

T

T
cS4_C3

cS4_D2
F

cS4_D1
TF

cS4_C3

cS4_D1
F

cS4_C2 cS4_D2
TT

cS4_C3

cS4_D2
F

cS4_D2
TF

cS4_C3

cS4_D2
F

cS2_C_W1

cS2_C_W2

cS2_C

cS2_D2

cS2
cS2_D1

cS2_C_W3
cS2_D3

T

F

cS6_C

cS6_D2

cS6
cS6_D1

T

F

cS3_C

cS3_D2

cS3
cS3_D1

 66

hierarchical DD system simulation with the given stimuli. The size of the items’
list CI for this coverage metric is:

1 1

2 .
cScS CASEIF

ci

k

nn
n

C c
i k

I n
= =

= +∑ ∑

Here

IFcSn is the number of if-type conditional statements,
icn is the number

of conditions in the ith conditional statement,
CASEcSn is the number of case-type

conditional statements and
kcn is the number of conditions in the kth conditional

statement. E.g., list of the condition coverage items for СovEx2 is
1 2 3(2* 2 2* 2 2) (3) 23.CI = + + + =

The main advantage of the proposed approach is low computational overhead.
Once the hierarchical HLDD is constructed, the analysis for every given stimuli
set is evaluated in a straightforward manner during HLDD simulation
(Algorithm 1, Subsection 2.3).

The size of the hierarchical HLDDs with the expanded conditional statements
grows with respect to CI and therefore there is a significant increase of the
memory consumption. However, the length of the average sub-path from the root
to terminal nodes grows linearly with the number of conditions. Therefore, since
the simulation time of a HLDD has a linear dependence on the average sub-path
from the root to terminal nodes, it will grow only linearly with respect to the
number of conditions.

A less compact HLDD representation contains more items, i.e. nodes and
edges. It means it requires more memory for the data structure storage and
possibly longer simulation time, if the average sub-path from the root to terminal
nodes becomes longer. However, it is potentially capable to represent the
design’s structure more accurately and therefore the coverage measurement may
be more accurate as well.

It has been shown in [10] that the results of the analysis of the discussed
coverage metrics, performed on reduced HLDDs, are more stringent that the ones
with the minimized HLDDs. Moreover, compared to HDL-based analysis, the
reduced HLDD-based results are always more stringent, while minimized
HLDD-based ones are often less.

At the same time, the performance of the base coverage metrics analyses,
based on the reduced and minimized HLDD model, is equivalent due to the fact
that both models have the same average length of sub-paths from the root to
terminal nodes. Compared to the full tree HLDD representation, the reduced
HLDD model usually has significant performance improvement while the
accuracy of the design’s structure representation remains the same for the
discussed coverage metrics.

 67

4. HLDD-BASED ASSERTION CHECKING

Application of assertions checking has been recognized to be an efficient

technique in many steps of the state-of-the-art digital systems design [11]. In
simulation-based verification, which is the main focus of this paper, assertions
play the role of monitors for a particular system behaviour during simulation and
signal about satisfaction or violation of the property of interest [12].

The popularity of assertion-based verification has encouraged cooperative
development of a language, specially dedicated for assertions expression. As a
result, a Property Specification Language (PSL), which is based on IBM’s
language Sugar, has been introduced [13]. Later it has become an IEEE 1850
Standard [14]. PSL has been specifically designed to fulfill several general
functional specification requirements for hardware, such as ease of use, concise
syntax, well-defined formal semantics, expressive power and known efficient
underlying algorithms in simulation-based verification. Research on the topic of
converting PSL assertions to various design representations, such as finite state
machines and hardware description languages, is gaining popularity [15–18].
Probably the most well-known commercial tool for this task is FoCs [19] by IBM.
The above-mentioned solutions and the approach proposed in [20] mainly address
synthesis of checkers from PSL properties that are to be used in hardware
emulation. The application of the same checker constructs for simulation in
software may lack efficiency due to target language concurrency and poor means
for temporal expressions. Current approach allows avoiding the above
limitations. The structure of an HLDD design representation with the temporal
extension, proposed in this paper, allows straightforward and lossless translation
of PSL properties. Traditionally the process of checking complex temporal
assertions in HDL environment causes significant time and resources overhead.
In this section, we discuss an approach to checking PSL assertions using HLDDs
that is aimed to overcome these drawbacks.

4.1. PSL for assertion expression

The PSL [13,21] is a multi-flavored language. In this paper we consider only its

VHDL flavour. PSL is also a multi-layered language. The layers include:
• Boolean layer – the lowest one, consists of Boolean expressions in HDL (e.g.

a &&(b || c))
• Temporal layer – sequences of Boolean expressions over multiple clock

cycles, also supports Sequential Extended Regular Expressions (SERE) (e.g.
{A[*3];B} |-> {C})

• Verification layer – it provides directives that tell a verification tool what to
do with the specified sequences and properties.

• Modelling layer – additional helper code to model auxiliary combinational
signals, state machines etc that are not part of the actual design but are
required to express the property.

 68

The temporal layer of the PSL language has two constituents:
• Foundation Language (FL) that is Linear time Temporal Logic (LTL) with

embedded SERE
• Optional Branching Extension (OBE) that is Computational Tree Logic

(CTL)
The latter considers multiple execution paths and models design behaviour as

execution trees. The OBE part of PSL is normally applied for formal verification.
Therefore, in this paper we shall consider only the FL part of PSL. In fact, only
FL, or more precisely, its subset known as PSL Simple Subset, is suitable for
dynamic assertion checking. This subset is explicitly defined in [139] and loosely
speaking it has two requirements for time: to advance monotonically and to be
finite, which leads to restrictions on types of operands for several operators.
Currently in the discussed HLDD-based approach only several LTL operators
without SERE support are implemented. However, as it will be shown later, the
support for SERE as well as for any other language constructs can be easily
added by an appropriate library extension.

Let us consider a simple example assertion, expressed in PSL:
 reqack: assert always (req -> next ack).

Here reqack followed by semicolon is a label that provides a name for the
assertion. assert is a verification directive from the Verification layer, always and
next are temporal operators, ->is an operator from Boolean layer, while req and
ack are Boolean operands that are also 2 signals in the DUV.

In the following the reqack assertion checking results are shown for 3
example stimuli sequences for signals {req, ack}:
• stimuli 1: ({0,0};{1,0};{0,1} {0,0}) - PASS (satisfied)
• stimuli 2: ({0,0};{1,0};{0,0} {0,0}) - FAIL (violated)
• stimuli 3: ({0,0};{0,0};{0,1} {0,0}) - not activated (vacuous pass)

Vacuous pass occurs if a passing property contains Boolean expression that,
in frames of the given simulation trace, has no effect on the property evaluation.
The property has passed not because of meeting all the specified behaviour but
only because of non-fulfillment of logical implication activation conditions. The
decision whether to treat vacuous passes as actual satisfactions of properties or
not depends on particular verification tool. The approaches presented in this
paper separate vacuous passes from normal passes of a property.

4.2. Temporally extended HLDDs

In order to support complex temporal constructs of PSL assertion, an

extension for the HLDD modelling formalism has been proposed [22]. The
extension is referred to as temporally extended high-level decision diagrams
(THLDDs).

Unlike the traditional HLDD, the temporally extended high-level decision
diagrams are aimed at representing temporal logic properties. A temporal logic
property P at the time-step ,ht T∈ denoted by (,),

ht
P f x T= where

1(, ,),mx x x= K is a Boolean vector and 1{ , ,)sT t t= K is a finite set of time-

 69

steps. In order to represent the temporal logic assertion (,),
ht

P f x T= a
temporally extended high-level decision diagram PG can be used.

Definition 2. A temporally extended high-level decision diagram (THLDD) is a
non-cyclic directed labelled graph that can be defined as a sixtuple

(, , , , ,),PG M E T Z Γ Φ= where M is a finite set of nodes, E is a finite set of
edges, T is a finite set of time-steps, Z is a function, which defines the
variables, labelling the nodes and their domains, Γ is a function on ,E repre-
senting the activating conditions for the edges, and Φ is a function on M and

,T defining temporal relationships for the labelling variables.

The graph PG has exactly three terminal nodes ,termM M∈ labelled with
constants, whose semantics is explained below:
• FAIL – the assertion P has been simulated and does not hold;
• PASS – the assertion P has been simulated and holds;
• CHK. (from CHECKING) – the assertion P has been simulated and it does

not fail, nor does it pass non-vacuously.
The function (,)im tΦ represents the relationship, indicating at which time-

steps t T∈ the node labelling variable ()l ix Z m= should be evaluated. More
exactly, the function returns the range of time-steps relative to current time ,currt
where the value of variable kx must be read. We denote the relative time range
by t∆ and calculation of variable lx using the time-range (,)im t tΦ = ∆ by .t

lx∆
We distinguish three cases:
• { , , },t j k∆ = ∀ K meaning that tj tk

l lx x∆ ∆∧ ∧K is true, i.e. variable lx is true
at every time-step between curr jt + and .curr kt +

• { , , },t j k∆ = ∃ K meaning that tj tk
l lx x∆ ∆∨ ∨K is true, i.e. variable lx is true

at least at one of the time-steps between curr jt + and .curr kt +
• ,t k∆ = where k is a constant. In other words, the variable lx has to be true

k time-steps from current time-step .currt In fact, t k∆ = is equivalent to and
may be represented by { , , },t k k∆ = ∀ K or alternatively by { , , }.t k k∆ = ∃ K
Notation ()cevent x is a special case of the upper bound of the time range,

denoted above by k and means the first time-step when cx becomes true. This
notation can be used in the three listed above THLDD temporal relationship
functions (,),im tΦ which creates the listed below variations of them. For ,t

lx∆
where lx and cx are node labelling variables:
• {0, , ()},ct event x∆ = ∀ K which means that variable lx is true at every time-

step between currt and the first time-step from currt when variable cx becomes
true, inclusively. This is equivalent to the PSL expression lx until_ .cx The
PSL expression lx until_ cx can be represented by t∆ =

{0, , () 1}.cevent x∀ −K
• {0, , ()},ct event x∆ = ∃ K which means that variable lx is true at least at one of

the time-steps between currt and the first time-step from currt when variable

cx becomes true, inclusive. This is equivalent to the PSL expression lx
before_ .cx The PSL expression lx before_ cx can be represented by

{0, , () 1}.ct event x∆ = ∃ −K

 70

• (),ct event x∆ = which means that variable lx has to be true at the first time-
step when cx becomes true. This is equivalent to the PSL expression

_ () .c lnext event x x
For Boolean, i.e. non-temporal, variables 0.t∆ =
Table 1 shows examples on how temporal relationships in THLDDs map to

PSL expressions.
In addition, we use the notion of endt as a special value for the upper bound of

the time range, denoted above by ;k endt is the final time-step that occurs at the
end of simulation and is determined by one of the following cases:
• number of test vectors
• the amount of time provided for simulation
• simulation interruption

The special values for the time range bounds (i.e. ()cevent x and)endt are
supported by the HLDD-based assertion checking process. In the proposed
approach the design simulation, which calculates simulation trace, precedes
assertion checking process. In practice, endt is the final time-step of the pre-
stored simulation trace.

Note, that THLDD is an extension of HLDD, defined in Section 2, as it
includes temporal relationships functions. The main purpose of the proposed
temporal extension is transferring additional information and giving directives to
the HLDD simulator that will be used for assertions checking.

4.3. PSL assertions conversion to THLDDs

The first step in the conversion process is parsing a PSL assertion of interest

into elementary entities, containing one operator only. The hierarchy of operators
is determined by the PSL operators precedence specified by the IEEE1850
Standard. The second step is generation of a THLDD representation for the
assertion. This process in turn consists of two stages. The first stage is
preparatory and consists of a PPG (Primitive Property Graphs) library creation
for elementary operators. The second stage is recursive hierarchical construction
of a THLDD graph for a complex property using the PPG library elements.

Table 1. Temporal relationships in THLDDs

PSL expression Formal semantics THLDD construct Φ

next_a[j to k] x x holds at all time-steps between tj and tk x∆t=∀ {j,...,k}
next_e[j to k] x x holds at least once between tj and tk x∆t=∃ {j,...,k}
next[k] x x holds at k time-steps from tcurr x∆t=k
x until_ xc x holds at all time-steps between tcurr and

the first time-step from tcurr where xc
holds

x∆t=∀ {0,...,event(x
c
)}

x before_ xc x holds at least once between tcurr and the
first time-step from tcurr where xc
holds

x∆t=∃ {0,...,event(x
c
)}

next_event(xc) x x holds at the first time-step from tcurr
where xc holds

x∆t=event(x
c
)

 71

A PPG should be created for every PSL operator supported by the proposed
approach. All the created PPGs are combined into one PPG Library. The library
is extensible and should be created only once. It implicitly determines the
supported PSL subset. The method currently supports only weak versions of PSL
FL LTL-style operators. However, by means of the supported operators a large
set of properties, expressed in PSL, can be derived. Primitive property graph is
always a THLDD graph. That means it uses HLDD model with the proposed
above temporal extension and has a standard interface.

Figure 7 shows examples of primitive property graphs for two PSL operators
next_e and logical implication ->.

The construction of complex THLDD properties is performed in the top-down
manner. The process starts from the operators with the lowest precedence,
forming the top level. Then their operands that are sub-operators with higher
precedence recursively form lower levels of the complex property. For example,
always and never operators have the lowest level of precedence and consequently
their corresponding PPGs are put to the highest level in the hierarchy. The sub-
properties (operands) are step-by-step substituted by lower level PPGs until the
lowest level, where sub-properties are pure signals or HDL operations.

Let us consider a sample PSL property:
gcd_ready: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)).

The resulting THLDD graph, describing this property, is shown in Fig. 8.

Fig. 7. Primitive property graphs for two of PSL operators.

Fig. 8. A THLDD representation of the PSL property gcd_ready.

PPG2 ″Pa -> Pb ″

FAIL PASS CHK.

Pa Pb

logical implication -> temporal operator next_e

PPG3 ″next_e[j to k](Pa)″

[∆t = ∃ { j,...,k }]

FAIL PASS CHK.

Pa

1

1 T

ready a=b ready∆t=∃ {1,...,3}

gcd_ready

[tmin = 0; tmax = tend]

FAIL PASS CHK.

0

F F

T

 72

The construction of the property gcd_ready implies usage of the four PPGs.
The nodes in the final THLDD contain signal variables and an HDL expression
(a = b).

4.4. HLDD-based assertion checking

The process of HLDD-based assertion checking implies the existing HLDD

simulator functionality (Algorithm 1) and its extension for assertion checking
presented by Algorithm 2.

In the current implementation, HLDD-based assertion checking is a two-step
process. First the DUV has to be simulated (Algorithm 1, Section 2.3), which
calculates the simulation trace. This trace is a starting point for assertion
checking that is performed in accordance with Algorithm 2 shown bellow. The
process of checking takes into account temporal relationships information at the
THLD nodes that represent an assertion.

Algorithm 2.
AssertionCheck()
 For each diagram G in the model
 For t=tmin...tmax
 mCurrent = m0 ; tnow = t
 xCurrent = Z(mCurrent)
 Repeat
 If tnow > tmax then
 Exit
 End if
 Value = xCurrent at Φ(mCurrent,tnow)
 mCurrent = mCurrent

Value

 tnow = tnow+∆t

 Until mCurrent ∉ Mterm
 Assign xG = xCurrent at time-step tnow
 End for /* t= tmin...tmax */
 End for
End AssertionCheck

A general flow of the HLDD-based assertion checking process can be
described as follows. The input data for the first step (simulation) are HLDD
model representation of the design under verification and stimuli. This step
results in a simulation trace, stored in a text file. The second step (checking) uses
this data as well as the set of THLDD assertions as input. The output of the
second step is the assertions checking results that include information about both
the assertions coverage and their validity.

The stored assertion validity data allows further analysis and reasoning of which
combinations of stimuli and design states have caused fails and passes of the
assertions. This data also implicitly contains information about the monitored asser-
tions coverage (i.e. assertion activity: “active” or “inactive”) by the given stimuli.

 73

5. EXPERIMENTAL RESULTS

This section demonstrates experimental results for the discussed HLDD

model applications for verification coverage analysis and assertion checking. The
experiment benchmarks several designs from ITC’99 benchmarks family [23] and
a design gcd which is an implementation of the greatest common devisor.

Figure 9 shows comparison results obtained in [10] with the proposed
methodology, based on different HLDD representations and coverage analysis,
achieved by a commercial state-of-the-art HDL simulation tool from a major
CAD vendor using the same sets of stimuli.

As it can be seen, the reduced HLDDs with expanded conditional nodes allow
equal or more stringent coverage evaluation in comparison to the commercial
coverage analysis software. For three designs (b01, b06 and b09) more stringent
analysis is achieved using HLDDs. The HLDD model allows increasing the
coverage accuracy up to 13% more exact statement measurement and 14%
branch measurement (b09 design). While minimized HLDD require less memory
compared to the reduced type, they do not suit accurate coverage analysis. Please
note, that a higher coverage percentage, reported by a coverage metric for the
given stimuli, means the metric is less stringent compared to another showing
more potential for stimuli improvement and thus being more accurate.

Figure 10 demonstrates experimental results obtained in [8], where it was
shown that HLDD-based coverage analysis has significantly lower (tens of times)

Fig. 9. HLDD-based coverage analysis evaluation.

Fig. 10. HLDD-based coverage analysis time overhead evaluation.

 74

computation (i.e. measurement) time overhead compared to the same commercial
simulator.

The evaluation of HLDD-based assertion checking is demonstrated in Fig. 11.
For the experimental results, performed in [22], a set of 5 realistic assertions has
been created for each benchmark. The assertions were selected on the following
basis:
• Different types of operators should be included (e.g. Boolean operators,

implication, temporal operators including until);
• Different outcomes should result (fail, pass, both);
• The failure/pass frequency should vary (frequent, infrequent).

For example the assertions selected for gcd design were the following:
p1: assert always(((not ready) and (a = b)) -> next_e[1 to 3](ready));

p2: assert always (reset -> next next((not ready) until (a = b)));

p3: assert never ((a /= b) and ready);

p4: assert never ((a /= b) and (not ready));

p5: assert always(reset -> next_a[2 to 5](not ready)).

The assertions used for the b00, b04, b09 benchmarks had the same temporal
complexity as the ones listed for the gcd design. Each assertion has been
checking 2–5 signals and besides an invariance operator (always or never)
contained from 1 to 3 LTL temporal operators from Table 1. SERE have not been
used as they are not currently supported. Both simulators were supplied with the
same sequences of realistic stimuli providing a good coverage for the assertions.

Figure 11 shows comparison of the assertion checking execution times
between HLDD simulator and the commercial tool. The execution time values in
the table are presented in seconds for 106 clock cycles of stimuli. Both tools have
shown identical responses to the assertion satisfactions and violations
occurrences. The conversion of the benchmarks representation from VHDL to
HLDD has taken from 219 to 260 ms and conversion of the set of 5 assertions for
each of the benchmarks from 14 to 19 ms, respectively. Please note, that these
conversions should be performed only once for each set of DUV and assertions
and they are comparable to the commercial CAD tools VHDL compilation times.

Fig. 11. HLDD-based assertion checking evaluation.

 75

During the experiments we have tried to use different number of time intervals
with various sizes and have not observed any issues with scalability, however,
proper experiments to evaluate the scalability issue are scheduled for the future.

The presented experimental results show the feasibility of the proposed
approach and a significant speed-up (2 times) in the execution time, required for
design simulation with assertion checking by the proposed approach compared to
the state-of-the-art commercial tool.

6. CONCLUSIONS

This paper has demonstrated several advantages of the application of high-

level decision diagrams for simulation-based verification.
The paper has discussed an approach to the structural coverage analysis using

HLDDs. In particular, statement, branch and condition coverage metrics have
been considered in details. It is important to emphasize that all coverage metrics
(i.e. statement, branch, condition or a combination of them) in the proposed
methodology are analysed by a single HLDD simulation tool which relies on
HLDD design representation model. Different levels of coverages are
distinguished by simply generating a different level of HLDD (i.e. minimized,
reduced, or hierarchical with expanded conditional nodes).

An HLDD-based approach for assertion checking has also been demonstrated.
The approach implies a temporal extension of HLDD model (THLDD) to support
temporal operations inherent in IEEE standard PSL properties and also to directly
support assertion checking. A hierarchical approach to generate THLDDs and
basic algorithms for THLDD-based assertion checking were discussed.

As a future work we see integration of these HLDD-based assertion checking
and coverage measurement methods for the design error diagnosis and debug
solutions.

ACKNOWLEDGEMENTS

This work has been supported by European Commission Framework Program

7 projects DIAMOND and CREDES, by European Union through the European
Regional Development Fund, by Estonian Science Foundation (grants Nos. 8478,
7068 and 7483), Enterprise Estonia funded ELIKO Development Centre and
Estonian Information Technology Foundation (EITSA).

REFERENCES

 1. Ubar, R., Raik, J. and Morawiec, A. Back-tracing and event-driven techniques in high-level
simulation with decision diagrams. In Proc. IEEE International Symposium on Circuits and
Systems. Geneva, 2000, 208–211.

 76

 2. Bryant, R. E. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 1986, C-35, 677–691.

 3. Clarke, E., Fujita, M., McGeer, P., McMillan, K. L., Yang, J. and Zhao, X. Multi terminal
BDDs: an efficient data structure for matrix representation. In Proc. International Work-
shop on Logic Synthesis, Louvain, Belgium, 1993, 1–15.

 4. Drechsler, R., Becker, B. and Ruppertz, S. K *BMDs: a new data structure for verification. In
Proc. European Design & Test Conference, Paris, 1996, 2–8.

 5. Chayakul, V., Gajski, D. D. and Ramachandran, L. High-level transformations for minimizing
syntactic variances. In Proc. ACM IEEE Design Automation Conference. Texas, TX, 1993,
413–441.

 6. Piziali, A. Functional Verification Coverage Measurement and Analysis. Springer Science,
New York, 2008.

 7. Bullseye testing technology. Code coverage analysis. Minimum acceptable code coverage.
URL: http://www.bullseye.com (September 28, 2009).

 8. Raik, J., Reinsalu, U., Ubar, R., Jenihhin, M. and Ellervee, P. Code coverage analysis using
high-level decision diagrams. In Proc. IEEE International Symposium on Design and
Diagnostics of Electronic Circuits and Systems. Bratislava, Slovakia, 2008, 201–206.

 9. Jenihhin, M., Raik, J., Chepurov, A. and Ubar, R. PSL assertion checking with temporally
extended high-level decision diagrams. In Proc. IEEE Latin-American Test Workshop.
Puebla, Mexico, 2008, 49–54.

10. Minakova, K., Reinsalu, U., Chepurov, A., Raik, J., Jenihhin, M., Ubar, R. and Ellervee, P.
High-level decision diagram manipulations for code coverage analysis. In Proc. IEEE
International Biennal Baltic Electronics Conference. Tallinn, Estonia, 2008, 207–210.

11. International technology roadmap for semiconductors. URL: http://www.itrs.net (September 28,
2009).

12. Yuan, J., Pixley, C. and Aziz, A. Constraint-Based Verification. Springer Science, New York,
2006.

13. Accellera. Property Specification Language Reference Manual, v1.1. Accellera Organization,
Napa, USA, 2004.

14. IEEE-Commission. IEEE standard for Property Specification Language (PSL). IEEE Std 1850-
2005, 2005.

15. Gheorghita, S. and Grigore, R. Constructing checkers from PSL properties. In Proc. 15th Inter-
national Conference on Control Systems and Computer Science (CSCS). Bucharest,
Roumania, 2005, 757–762.

16. Bustan, D., Fisman, D. and Havlicek, J. Automata construction for PSL. Technical Report
MCS05-04, The Weizmann Institute of Science, 2005.

17. Boulé, M. and Zilic, Z. Efficient automata-based assertion-checker synthesis of PSL properties.
In Proc. IEEE International High Level Design Validation and Test Workshop. Monterey,
CA, 2006, 1–6.

18. Morin-Allory, K. and Borrione, D. Proven correct monitors from PSL specifications. In Proc.
Design, Automation and Test in Europe Conference. Munich, Germany, 2006, 1–6.

19. IBM AlphaWorks. FoCs property checkers generator ver. 2.04. URL: http://www.alphaworks.
ibm.com/tech/FoCs, (September 28, 2009).

20. Jenihhin, M., Raik, J., Chepurov, A. and Ubar, R. Assertion checking with PSL and high-level
decision diagrams. In Proc. IEEE Workshop on RTL and High Level Testing. Beijing,
China, 2007, 1–6.

21. Eisner, C. and Fisman, D. A Practical Introduction to PSL. Springer Science, New York, 2006.
22. Jenihhin, M., Raik, J., Chepurov, A. and Ubar, R. Temporally extended high-level decision

diagrams for PSL assertions simulation. In Proc. IEEE European Test Symposium.
Verbania, Italy, 2008, 61–68.

23. Corno, F., Reorda, M. S. and Squillero, G. RT-level ITC’99 benchmarks and first ATPG
results. IEEE Journal Design & Test of Computers, 2000, 17, 44–53.

 77

Kõrgtaseme otsustusdiagrammide kasutamine simuleerimisel
põhinevas riistvara verifitseerimisel

Maksim Jenihhin, Jaan Raik, Anton Chepurov ja Raimund Ubar

On kirjeldatud kõrgtaseme otsustusdiagrammide (KTOD) eeliseid skeemide

esitamiseks simuleerimisel põhineval digitaalriistvara verifitseerimisel. On vaa-
deldud selliseid verifitseerimise ülesandeid, nagu väidete kontroll ja verifitseeri-
mise katte mõõtmine. Esiteks on artiklis välja töötatud meetod KTOD mudelil
põhinevaks verifitseerimise struktuurse katte analüüsiks. Traditsioonilistel mude-
litel põhinevate analoogidega võrreldes saavutatakse nimetatud meetodi abil katte
mõõtmine kiiremini ja suurema täpsusega. Teiseks on esitatud uudne meetod
verifitseerimise väidete kontrolliks, mis põhineb KTOD mudelil. Esitatud lähene-
mine annab temporaalse laienduse olemasolevale KTOD mudelile, mis on mõel-
dud IEEE Property Specification Language’i keeles esitatud omaduste toetami-
seks. Artiklis esitatud katsete tulemused tõestavad kirjeldatud meetodite raken-
datavust ja efektiivsust.

