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Abstract. This paper describes the advantages of the application of a system representation model, 
called High-Level Decision Diagrams (HLDDs), for hardware functional verification. Two tasks of 
simulation-based verification, considered in this paper, are assertion checking and code coverage 
analysis. Assertion checking employs temporal extension of an existing HLDD model aimed at 
supporting temporal properties, expressed in Property Specification Language (PSL). The described 
approach to code coverage analysis provides for more accurate results than traditional VHDL 
code coverage methods. Experimental results show the feasibility and efficiency of the HLDDs-
based approaches. 
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1. INTRODUCTION 

 
Traditional design representation models are based on HDLs (e.g. VHDL or 

Verilog). However, a number of drawbacks are related to the application of 
HDLs-based models in verification. 

The awkwardness and usually even inability of HDLs to represent complex 
temporal assertions has caused introduction of languages, especially dedicated 
for this purpose, such as the Property Specification Language (PSL). The latter 
one in turn is not always supported by design simulation tools or this support 
may be expensive. The attempts to unify design implementation and its 
properties’ representations normally result in creation of large hardware checkers 
that assume significant restrictions on the initial assertion functionality. At the 
same time a comprehensive verification coverage measurement, based on the 
HDL model, may require complicated HDL code manipulations, resulting in 
inefficient resource consumption. 
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In this paper we address the main simulation-based hardware verification 
issues that are speed and accuracy of the verification process. We target these 
issues by exploiting the advantages of the HLDD-based modelling formalism. 
The main contribution of this paper is the combination of assertion checking and 
coverage analysis approaches into a single homogeneous HLDD-based dynamic 
functional verification flow. Previous research, including [1], has shown that 
HLDDs are an efficient model for design simulation and convenient for diagnosis 
and debug. 

The paper is organized as follows. Section 2 defines the HLDD graph model, 
discusses its compactness types and describes the HLDD-based simulation 
process. HLDD-based structural coverage analysis is discussed in Section 3. Here 
the most popular coverage metrics such as statement, branch and condition are 
considered. Section 4 discusses application of the HLDD for assertion checking. 
For this purpose a brief description of IEEE std PSL as a language for assertions 
entry is provided. Further, the main issues of the approach itself, such as 
temporal extension for HLDD (THLDD), hierarchical creation of THLDDs and 
the THLDD assertion checking process, are discussed. Section 5 provides the 
experimental results, and finally conclusions are drawn. 

 
 

2. HIGH-LEVEL  DECISION  DIAGRAMS 
 
Various kinds of Decision Diagrams (DD) have been applied for design 

verification and test for about two decades. Reduced Ordered Binary Decision 
Diagrams (BDD) [2] as canonical forms of Boolean functions have their 
application in equivalence checking and in symbolic model checking. 

In this paper we consider a decision diagram representation called High-Level 
Decision Diagrams (HLDDs) that can be considered as a generalization of BDD. 
There exist a number of other word-level decision diagrams such as multi-
terminal DDs (MTDDs) [3], K*BMDs [4] and ADDs [5]. However, in MTDDs 
the non-terminal nodes hold Boolean variables only. The K*BMDs, where 
additive and multiplicative weights label the edges, are useful for compact 
canonical representation of functions on integers (especially wide integers). The 
main goal of HLDD representations, described in this paper, is not canonicity, 
but ease of simulation. The principal difference between HLDDs and ADDs lies 
in the fact that ADDs edges are not labelled with activating values. In HLDDs 
the selection of a node activates a path through the diagram, which derives the 
needed value assignments for variables. 

The HLDDs can be used for representing different abstraction levels from 
RTL (Register-Transfer Level) to TLM (Transaction Level Modelling) and the 
behavioural level. HLDDs have proven to be an efficient model for simulation 
and diagnosis since they provide for a fast evaluation by graph traversal and for 
easy identification of cause–effect relationships [1]. The HLDD model itself is 
not a contribution of this paper. 
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2.1. Definition  of  the  HLDD  modelling  formalism 
 
In the following we give a formal definition of High-Level Decision 

Diagrams. Let us denote a discrete function ( ),y f x= where 1( , , )ny y y= K  and 

1( , , )mx x x= K  are vectors defined on 1 mX X X= × ×K  with values 

1 ,ny Y Y Y∈ = × ×K  and both, the domain X  and the range Y  are finite sets of 
values. The values of variables may be Boolean, Boolean vectors or integers. 
 
Definition 1. A HLDD, representing a discrete function ( ),y f x=  is a directed 
acyclic labelled graph that can be defined as a quadruple ( , , , ),yG M E Z Γ=  
where M  is a finite set of vertices (referred to as nodes), E  is a finite set of 
edges, Z  is a function, which defines the variables labelling the nodes, and Γ  is 
a function on .E   
 

The function ( )iZ m  returns the variable ,kx  which is labelling node .im  
Each node of a HLDD is labelled with a variable. In special cases, nodes can be 
labelled with constants or algebraic expressions. An edge e E∈  of a HLDD is an 
ordered pair 2

1 2( , ) ,e m m E= ∈  where 2E  is the set of all the possible ordered 
pairs in set .E  Γ  is a function on ,E  representing the activating conditions of 
the edges for the simulating procedures. The value of ( )eΓ  is a subset of the 
domain kX  of the variable ,kx  where ( , )i je m m=  and ( ) .i kZ m x=  It is required 
that { ( ) | ( , ) }i i jPm e e m m EΓ= = ∈  is a partition of the set .kX  Figure 1 presents 
a HLDD for a discrete function 1 2 3 4( , , , ).y f x x x x=  HLDD has only one 
starting node (root node) 0 ,m  for which there are no preceding nodes. The nodes 
that have no successor nodes are referred to as terminal nodes .termM M∈  

HLDD models can be used for representing digital systems. In such models, 
the non-terminal nodes correspond to conditions or to control signals, and the 
terminal nodes represent data operations (functional units). Register transfers and 
constant assignments are treated as special cases of operations. When repre-
senting systems by decision diagram models, in the general case, a network of 
HLDDs rather than a single HLDD is required. During the simulation in HLDD 
systems, the values of some variables, labelling the nodes of a HLDD, are 
calculated by other HLDDs of the system. 

 
 

      
 

Fig. 1. A high-level decision diagram representing a function y = f (x1, x2, x3, x4). 

Gy = (M, E, Z, Γ); 
M = {m0, m1, m2, m3, m4}; 
E = {e1, e2, e3, e4, e5}; e1 = (m0, m1), 
e2 = (m0, m3), e3 = (m0, m4), 
e4 = (m1, m2), e5 = (m1, m3); 
Z(m0) = Z(m4) = x2, Z(m1) = x3, 
Z(m2) = x4, Z(m3) = x1; 
Γ(e1) = {0}, Γ(e2) = {1, 2, 3}, 
Γ(e3) = {4, 5, 6, 7}, Γ(e4) = {2}, 
Γ(e5) = {0, 1, 3}. 
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 (a)             (b)                             (c) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A behavioural VHDL (a), its RTL (b) and HLDD (c). 
 
 
Consider the example of HLDD representation of a VHDL design, containing 

feedback loops shown in Fig. 2. Figure 2a presents a behavioural description of 
the greatest common divisor algorithm, which contains variable assignments, a 
loop construct (WHILE) and an if-statement. Figure 2b provides an RTL 
implementation of the algorithm. Figure 2c shows the HLDD representation of 
the RTL, given in Fig. 2b. It is a system of HLDDs, where for each HDL variable 
a separate diagram corresponds. 

Different from the well-known Reduced Ordered BDD models, which have 
worst-case exponential space requirements, HLDD size scales well with respect 
to the size of the RTL code. Let n be the number of processes in the RTL code, v 
be the average number of variables/signals inside a process and c be the average 
number of conditional branches in a process. In the worst case, the number of 
nodes in the HLDD model will be equal to nvc. Note, that the complexity of 
HLDDs is just O(n) with respect to the number of processes in the code. 

Figure 3 presents a functional segment of VHDL description of an example 
design CovEx2 and its corresponding HLDD representation. There are three 
columns with numerical values to the left from the VHDL code. The first column 
Ln. is basically the line number, while the other two are explained further. The 
variables’ names in CovEx2 follow the following unification rules: {V – an 
output variable; cS – a conditional statement; D – a decision; T – a terminal node; 
C – a condition}. The nodes and edges in HLDD representation are also 
enumerated. This enumeration is used for explanatory purposes and will be 
discussed in Section 3. 

 

if res = 1 then state:=s0;  
else 
 case state  
 when s0 => 
  a:=in1; b:=in2; state:=s1;  
 when s1=> 

  if a≠b then state:=s2; 
  else state:=s5; endif; 
 when s2=> 
  if a>b then state:=s3; 
  else state:=s4; endif; 
 when s3=> 
  a:=a-b; state:=s1; 
 when s4=> 
  b:=b-a; state:=s1; 
 when s5=> 
  state:=s5; 
 end case 
end if 

state 
res 

0
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T
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state 

s0 
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ε 

b 
state 

s0 

b-a 

in2 

s4

b 
ε 

a := in1; 
b := in2; 
while (a ≠ b) 
if (a > b) then 
 a := a – b; 
else 
 b := b – a; 
end if; 
end while; 

 



 60

 

Fig. 3. Example design CovEx2 representation by VHDL (functional segment) and HLDDs. 
 

 

2.2. Representation  types  of  the  HLDD  model 
 

We distinguish three types of HLDD representations according to their com-
pactness and with consideration of the HLDD reduction rules. These rules are 
similar to the reduction rules for BDDs, presented in [2] and can be generalized as 
follows: 
HLDD reduction rule 1: Eliminate all the redundant nodes whose all edges point to 

an equivalent sub-graph. 
HLDD reduction rule 2: Share all the equivalent sub-graphs. 

The three representation types in the increasing order of compactness are: 
• Full tree HLDD contains all control flow branches of the design. This type of 

representation includes a lot of redundancy. They introduce large space 
requirements and relatively slow simulation times. 

• Reduced HLDD is obtained by application of the HLDD reduction rule 1 to 
the full tree representation. This HLDD representation is still a tree-graph. 
This type of representation combines the advantages of full-tree representa-
tion and minimized representation.  

• Minimized HLDD is obtained by application of both HLDD reduction rules 1 
and 2 to the full tree representation. This representation is the most compact 
of the three. 
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if (cS1_C1 or cS1_C2)  
then 
    case cS2_C is  
    when cS2_C_W1 =>  
        V2 <= V2_T1; 
        if (cS3_C)     -- where, cS3_C = cS6_C 
        then  
            V1 <= V1_T2; 
        else  
            V1 <= V1_T1;  
        end if; 
    when cS2_C_W2 =>  
        V2 <= V2_T1; 
        if (cS4_C1 and ((not cS4_C2) or cS4_C3))  
        then  
            V1 <= V1_T3; 
        else  
            V1 <= V1_T1;  
        end if; 
    when cS2_C_W3 =>  
        V1 <= V1; 
        if (cS5_C1 and cS5_C1)     
        then  
            V2 <= V2_T2; 
        else  
            V2 <= V2_T1;  
        end if; 
    end case; 
else  
    V2 <= V2_T2; 
    if (cS6_C)         -- where, cS3_C = cS6_C 
    then  
        V1 <= V1_T2; 
    else  
        V1 <= V1_T1;  
    end if;  
end if; VHDL     HLDD 
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Different design verification tasks may require different HLDD representation 
types. For example, as it will be shown in Section 3, the compactness of HLDD 
representation has significant impact on the accuracy of the verification coverage 
analysis. 

The HLDD representation, used in Fig. 3, was of the reduced type. Figures 4 
and 5 represent CovEx2 design by full tree and minimized HLDDs, respectively. 

 
2.3. Simulation  using  HLDDs 

 
In [1], we have implemented an algorithm, supporting both RTL and 

behavioural design abstraction levels. Algorithm 1 presents the HLDD-based 
simulation engine for RTL, behavioural and mixed HDL description styles. 

Simulation on decision diagrams takes place as follows. Consider a situation, 
where all the node variables are fixed to some value. For each non-terminal node 

,term
im M∉  according to the value kv  of the variable ( ),k ix Z m=  certain output 

edge ( , ),i je m m=  ( )kv eΓ∈  will be chosen, which enters into its corresponding 
successor node .jm  Let us call such connections activated edges under the given 
values and denote them by .kv

im  Succeeding each other, activated edges form in 
turn activated paths. For each combination of values of all the node variables 
there always exists a corresponding activated path from the root node to some  
 

 

 

Fig. 4. A full tree HLDD representation for CovEx2 design. 
 
 

 

Fig. 5. A mimized HLDD representation for CovEx2 design. 
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terminal node. We refer to this path as the main activated path. The simulated 
value of variable, represented by the HLDD, will be the value of the variable 
labelling the terminal node of the main activated path. 
 
Algorithm 1.  
 SimulateHLDD() 
     For each diagram G in the model 
         mCurrent = m0 
         Let xCurrent be the variable labeling mCurrent  
         While mCurrent is not a terminal node 
             If xCurrent is clocked or its DD is ranked after G then 
                 Value = previous time-step value of xCurrent 
             Else 
                 Value = present time-step value of xCurrent 
             End if 
                 mCurrent = mCurrent

Value 

         End while 
         Assign xG = xCurrent 
     End for 
 End SimulateHLDD 

 
In the RTL style, the algorithm takes the previous time step value of variable 
,jx  labelling a node ,im  if jx  represents a clocked variable in the corresponding 

HDL. Otherwise, the present value of jx  will be used. In the case of behavioural 
HDL coding style, HLDDs are generated and ranked in a specific order to ensure 
causality. For variables ,jx  labelling HLDD nodes the previous time step value 
is used if the HLDD calculating jx  is ranked after the current decision diagram. 
Otherwise, the present time step value will be used. 

Let us explain the HLDD simulation process on the decision diagram 
example, presented in Fig. 1. Assuming that variable 2x  is equal to 2, a path is 
activated from node 0m  (the root node) to a terminal node 3,m  labelled with 1.x  
Let the value of variable 1x  be 4, thus, 1 4.y x= =  Note, that this type of 
simulation is event-driven since we have to simulate only those nodes that are 
traversed by the main activated path.  

 
 

3. HLDD-BASED  COVERAGE  ANALYSIS 
 
Hardware verification coverage analysis is aimed to estimate quality and 

completeness of the performed verification. It plays a key role in simulation-
based verification and helps to find an answer to the important yet sophisticated 
question of when the design is verified enough. The main focus in this paper is on 
the structural coverage (code coverage) for simulation-based verification as the 
most widely used in practice. This section describes how a number of traditional 
code coverage metrics [6,7] can be analysed, based on the HLDD model. 
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3.1. Statement  coverage  analysis 
 
The statement coverage is the ratio of statements, executed during simulation, 

to the total number of statements under the given set of stimuli. 
The idea of statement coverage representation on HLDDs was proposed in [8] 

and developed further in [9]. The statement coverage metric has a straightforward 
mapping to HLDD-based coverage. It maps directly to the ratio of nodes mCurrent, 
traversed during the HLDD simulation presented in Algorithm 1 (Sub-
section 2.3), to the total number of the HLDD nodes in the DUV’s (Design Under 
Verification) representation. The appropriate type of HLDD representation for 
the analysis of both, statement and branch coverage metrics, is the reduced one. 
The variations in the analysis, caused by different HLDD representation types, 
are discussed further. 

Let us consider the VHDL description of the CovEx2 design, provided in 
Fig. 3. The numbers in the second column (Stm.) correspond to the lines with 
statements (both conditional and assignment). The 20 HLDD nodes of the two 
graphs in the same figure correspond to the 18 statements of the VHDL segment. 
Covering all nodes in the HLDD model (i.e. full HLDD node coverage) 
corresponds to covering all statements in the respective HDL (100% statement 
coverage). However, the opposite is not true. HLDD node coverage is slightly 
more stringent than HDL statement coverage. Please note that some of the HDL 
statements have duplicated representation by the HLDD nodes. This is due to the 
fact that HLDD diagrams are normally generated for each data variable 
separately. Please consider statements 1 and 2 with asterisk ‘*’ in VHDL 
representation and additional indexes in HLDD (Fig. 3). They are represented 
twice by the nodes of both variables V1 and V2 graphs, and therefore there are 20 
HLDD nodes in total. 

The fact that HLDD node coverage is slightly more stringent than HDL 
statement coverage is caused by their property to better represent the actual 
structure of the design. For example, if one statement in a design description by 
VHDL can be accessed by several execution paths, it will be represented by a 
number of nodes (or sub-graphs) in the corresponding graph when reduced, or 
full-tree HLDD representations are used. 

 
3.2. Branch  coverage  analysis 

 
The branch coverage metric shows the ratio of branches in the control flow 

graph of the code that are traversed under the given set of stimuli. This metric is 
also known as decision coverage, especially in software testing [7], and 
arc coverage. In a typical application of branch coverage measurement, the 
number of every decision’s hits is counted. Note, that the full branch coverage 
comprises full statement coverage. 

Similar to the statement coverage, branch coverage also has very clear 
representation in the HLDD model (also initially proposed in [8] and developed 
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further in [9]). It is the ratio of every edge eactive, activated in the simulation 
process, presented by Algorithm 1 (Subsection 2.3) to the total number of edges 
in the corresponding HLDD representation of the DUV. 

Let us consider the VHDL segment in Fig. 3. Here, the third column (Dcn.) 
numbers all 13 branches (aka decisions) of the code. The edges in the HLDD 
graphs, provided in Fig. 3, represent these branches and are marked by the 
corresponding numbers (underlined). Covering all the edges in a HLDD model 
(i.e. full HLDD edge coverage) corresponds to covering all branches in the 
respective HDL. However, similarly to the previously discussed statement on 
coverage mapping, here the opposite is also not true and HLDD edge coverage is 
slightly more stringent than HDL branch coverage. 

Please note that some of the HDL branches also have duplicated repre-
sentation by the HLDD edges. This is due to the same reason as with HLDD 
nodes. In Fig. 3 they are marked by ‘*’ and by additional subscript indexes. 

The HLDD-based approaches for statement and branch coverage metrics can 
further be extended for other metrics of structural verification coverage such as 
state coverage (aka FSM coverage), data flow coverage and others. In the first 
case the graph or graphs for the state variable should be analysed. The second 
one would require strict HLDD model partitioning by the variables sub-graphs 
and would map to the coverage of all single paths from terminal nodes to the root 
nodes separately in all variables’ HLDD sub-graphs. 

 
3.3. Condition  coverage  analysis 

 
Condition coverage metric reports all cases of each Boolean sub-expression, 

separated by logical operators or and and; in a conditional statement it causes the 
complete conditional statement to evaluate the decisions (e.g. ‘true’ or ‘false’ 
values) under the given set of stimuli. It differs from the branch coverage by the 
fact that in the branch coverage only the final decision, determining the branch, is 
taken into account. If we have n conditions, joined by logical and operators in a 
logical expression of a conditional statement, it means that the probability of 
evaluating the statement to the decision ‘true’ is 1/2n (considering pure random 
stimuli for the condition values). Calculation of the condition coverage, based on 
HDL representation, is a sophisticated multi-step process. However, the condi-
tion coverage metric allows discovering information about many corner cases of 
the DUV. 

In this section we discuss an approach for condition coverage metric analysis, 
based on the HLDD model. The approach is based on a hierarchical DUV repre-
sentation, where the conditional statements with complex logical expressions 
(normally represented by single nodes in HLDD graphs) are expanded into 
separate HLDD graphs. 

Let us consider the example design CovEx2, provided in Fig. 3. It contains the 
following 6 conditional statements: 
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cS1: if (cS1_C1 or cS1_C2) then cS1_D1 else cS1_D2; 

cS2: case (cS2_C)  when cS2_C_W1: cS2_D1;  

   when cS2_C_W2: cS2_D2;  

   when cS2_C_W3: cS2_D3; 

cS3: if (cS3_C) then cS3_D1 else cS3_D2;  -- where, cS3_C = cS6_C 

cS4: if (cS4_C1 and ((not cS5_C2) or cS5_C3))then cS4_D1 else cS4_D2; 

cS5: if (cS5_C1 and cS5_C2) then cS5_D1 else cS5_D2; 

cS6: if (cS6_C) then cS6_D1 else cS6_D2;  -- where, cS3_C = cS6_C 

 
The HLDD expansion graphs for these conditional statements are provided in 

Fig. 6. Here the terminal nodes are marked by background colors according to 
different decisions for better readability.  

These 6 expansion graphs can be considered as sub-graphs, representing 
“virtual” variables (because they are not real variables of the CovEx2 VHDL 
representation) cS1–cS6. Thus together with the two HLDD graphs for variables 
V1 and V2 (Fig. 3) these sub-graphs compose hierarchical HLDD representation 
of the design (altogether 8 graphs). Here we choose graphs from Fig. 3, because 
accurate condition coverage analysis requires reduced type of HLDDs.  

The full condition coverage metric maps to the full coverage of terminal 
nodes of the conditional statements expansion graphs during the complete  
 

 
 

Fig. 6. Expansion graphs for conditional statements of CovEx2. 
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hierarchical DD system simulation with the given stimuli. The size of the items’ 
list CI  for this coverage metric is: 
 

1 1

2 .
cScS CASEIF

ci

k

nn
n

C c
i k

I n
= =

= +∑ ∑  

 
Here 

IFcSn  is the number of if-type conditional statements, 
icn  is the number 

of conditions in the ith conditional statement, 
CASEcSn  is the number of case-type 

conditional statements and 
kcn  is the number of conditions in the kth conditional 

statement. E.g., list of the condition coverage items for СovEx2 is 
1 2 3(2* 2 2* 2 2 ) (3) 23.CI = + + + =  

The main advantage of the proposed approach is low computational overhead. 
Once the hierarchical HLDD is constructed, the analysis for every given stimuli 
set is evaluated in a straightforward manner during HLDD simulation 
(Algorithm 1, Subsection 2.3). 

The size of the hierarchical HLDDs with the expanded conditional statements 
grows with respect to CI  and therefore there is a significant increase of the 
memory consumption. However, the length of the average sub-path from the root 
to terminal nodes grows linearly with the number of conditions. Therefore, since 
the simulation time of a HLDD has a linear dependence on the average sub-path 
from the root to terminal nodes, it will grow only linearly with respect to the 
number of conditions. 

A less compact HLDD representation contains more items, i.e. nodes and 
edges. It means it requires more memory for the data structure storage and 
possibly longer simulation time, if the average sub-path from the root to terminal 
nodes becomes longer. However, it is potentially capable to represent the 
design’s structure more accurately and therefore the coverage measurement may 
be more accurate as well. 

It has been shown in [10] that the results of the analysis of the discussed 
coverage metrics, performed on reduced HLDDs, are more stringent that the ones 
with the minimized HLDDs. Moreover, compared to HDL-based analysis, the 
reduced HLDD-based results are always more stringent, while minimized 
HLDD-based ones are often less. 

At the same time, the performance of the base coverage metrics analyses, 
based on the reduced and minimized HLDD model, is equivalent due to the fact 
that both models have the same average length of sub-paths from the root to 
terminal nodes. Compared to the full tree HLDD representation, the reduced 
HLDD model usually has significant performance improvement while the 
accuracy of the design’s structure representation remains the same for the 
discussed coverage metrics. 
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4. HLDD-BASED  ASSERTION  CHECKING 
 
Application of assertions checking has been recognized to be an efficient 

technique in many steps of the state-of-the-art digital systems design [11]. In 
simulation-based verification, which is the main focus of this paper, assertions 
play the role of monitors for a particular system behaviour during simulation and 
signal about satisfaction or violation of the property of interest [12]. 

The popularity of assertion-based verification has encouraged cooperative 
development of a language, specially dedicated for assertions expression. As a 
result, a Property Specification Language (PSL), which is based on IBM’s 
language Sugar, has been introduced [13]. Later it has become an IEEE 1850 
Standard [14]. PSL has been specifically designed to fulfill several general 
functional specification requirements for hardware, such as ease of use, concise 
syntax, well-defined formal semantics, expressive power and known efficient 
underlying algorithms in simulation-based verification. Research on the topic of 
converting PSL assertions to various design representations, such as finite state 
machines and hardware description languages, is gaining popularity [15–18]. 
Probably the most well-known commercial tool for this task is FoCs [19] by IBM. 
The above-mentioned solutions and the approach proposed in [20] mainly address 
synthesis of checkers from PSL properties that are to be used in hardware 
emulation. The application of the same checker constructs for simulation in 
software may lack efficiency due to target language concurrency and poor means 
for temporal expressions. Current approach allows avoiding the above 
limitations. The structure of an HLDD design representation with the temporal 
extension, proposed in this paper, allows straightforward and lossless translation 
of PSL properties. Traditionally the process of checking complex temporal 
assertions in HDL environment causes significant time and resources overhead. 
In this section, we discuss an approach to checking PSL assertions using HLDDs 
that is aimed to overcome these drawbacks. 

 
4.1. PSL  for  assertion  expression 

 
The PSL [13,21] is a multi-flavored language. In this paper we consider only its 

VHDL flavour. PSL is also a multi-layered language. The layers include: 
•  Boolean layer – the lowest one, consists of Boolean expressions in HDL (e.g. 

a &&(b || c)) 
•  Temporal layer – sequences of Boolean expressions over multiple clock 

cycles, also supports Sequential Extended Regular Expressions (SERE) (e.g. 
{A[*3];B} |-> {C}) 

•  Verification layer – it provides directives that tell a verification tool what to 
do with the specified sequences and properties. 

•  Modelling layer – additional helper code to model auxiliary combinational 
signals, state machines etc that are not part of the actual design but are 
required to express the property. 
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The temporal layer of the PSL language has two constituents: 
•  Foundation Language (FL) that is Linear time Temporal Logic (LTL) with 

embedded SERE 
•  Optional Branching Extension (OBE) that is Computational Tree Logic 

(CTL) 
The latter considers multiple execution paths and models design behaviour as 

execution trees. The OBE part of PSL is normally applied for formal verification. 
Therefore, in this paper we shall consider only the FL part of PSL. In fact, only 
FL, or more precisely, its subset known as PSL Simple Subset, is suitable for 
dynamic assertion checking. This subset is explicitly defined in [139] and loosely 
speaking it has two requirements for time: to advance monotonically and to be 
finite, which leads to restrictions on types of operands for several operators. 
Currently in the discussed HLDD-based approach only several LTL operators 
without SERE support are implemented. However, as it will be shown later, the 
support for SERE as well as for any other language constructs can be easily 
added by an appropriate library extension. 

Let us consider a simple example assertion, expressed in PSL: 
     reqack: assert always (req -> next ack). 

Here reqack followed by semicolon is a label that provides a name for the 
assertion. assert is a verification directive from the Verification layer, always and 
next are temporal operators, ->is an operator from Boolean layer, while req and 
ack are Boolean operands that are also 2 signals in the DUV.  

In the following the reqack assertion checking results are shown for 3 
example stimuli sequences for signals {req, ack}: 
•  stimuli 1: ({0,0};{1,0};{0,1} {0,0}) - PASS (satisfied) 
•  stimuli 2: ({0,0};{1,0};{0,0} {0,0}) - FAIL (violated) 
•  stimuli 3: ({0,0};{0,0};{0,1} {0,0}) - not activated (vacuous pass) 

Vacuous pass occurs if a passing property contains Boolean expression that, 
in frames of the given simulation trace, has no effect on the property evaluation. 
The property has passed not because of meeting all the specified behaviour but 
only because of non-fulfillment of logical implication activation conditions. The 
decision whether to treat vacuous passes as actual satisfactions of properties or 
not depends on particular verification tool. The approaches presented in this 
paper separate vacuous passes from normal passes of a property. 

 
4.2. Temporally  extended  HLDDs 

 
In order to support complex temporal constructs of PSL assertion, an 

extension for the HLDD modelling formalism has been proposed [22]. The 
extension is referred to as temporally extended high-level decision diagrams 
(THLDDs). 

Unlike the traditional HLDD, the temporally extended high-level decision 
diagrams are aimed at representing temporal logic properties. A temporal logic 
property P  at the time-step ,ht T∈  denoted by ( , ),

ht
P f x T=  where 

1( , , ),mx x x= K  is a Boolean vector and 1{ , , )sT t t= K  is a finite set of time-
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steps. In order to represent the temporal logic assertion ( , ),
ht

P f x T=  a 
temporally extended high-level decision diagram PG  can be used. 
 
Definition 2. A temporally extended high-level decision diagram (THLDD) is a 
non-cyclic directed labelled graph that can be defined as a sixtuple 

( , , , , , ),PG M E T Z Γ Φ=  where M  is a finite set of nodes, E  is a finite set of 
edges, T  is a finite set of time-steps, Z  is a function, which defines the 
variables, labelling the nodes and their domains, Γ  is a function on ,E  repre-
senting the activating conditions for the edges, and Φ  is a function on M  and 

,T  defining temporal relationships for the labelling variables. 
 

The graph PG  has exactly three terminal nodes ,termM M∈  labelled with 
constants, whose semantics is explained below: 
•  FAIL – the assertion P  has been simulated and does not hold; 
•  PASS – the assertion P  has been simulated and holds; 
•  CHK. (from CHECKING) – the assertion P  has been simulated and it does 

not fail, nor does it pass non-vacuously. 
The function ( , )im tΦ  represents the relationship, indicating at which time-

steps t T∈  the node labelling variable ( )l ix Z m=  should be evaluated. More 
exactly, the function returns the range of time-steps relative to current time ,currt  
where the value of variable kx  must be read. We denote the relative time range 
by t∆  and calculation of variable lx  using the time-range ( , )im t tΦ = ∆  by .t

lx∆  
We distinguish three cases: 
•  { , , },t j k∆ = ∀ K  meaning that tj tk

l lx x∆ ∆∧ ∧K  is true, i.e. variable lx  is true 
at every time-step between curr jt +  and .curr kt +  

•  { , , },t j k∆ = ∃ K   meaning  that  tj tk
l lx x∆ ∆∨ ∨K  is true, i.e. variable lx  is true 

at least at one of the time-steps between curr jt +  and .curr kt +  
•  ,t k∆ =  where k  is a constant. In other words, the variable lx  has to be true 

k  time-steps from current time-step .currt  In fact, t k∆ =  is equivalent to and 
may be represented by { , , },t k k∆ = ∀ K  or alternatively by { , , }.t k k∆ = ∃ K  
Notation ( )cevent x  is a special case of the upper bound of the time range, 

denoted above by k  and means the first time-step when cx  becomes true. This 
notation can be used in the three listed above THLDD temporal relationship 
functions ( , ),im tΦ  which creates the listed below variations of them. For ,t

lx∆  
where lx  and cx  are node labelling variables: 
•  {0, , ( )},ct event x∆ = ∀ K  which means that variable lx  is true at every time-

step between currt  and the first time-step from currt  when variable cx  becomes 
true, inclusively. This is equivalent to the PSL expression lx  until_ .cx  The 
PSL expression lx  until_ cx  can be represented by t∆ =  

{0, , ( ) 1}.cevent x∀ −K  
•  {0, , ( )},ct event x∆ = ∃ K  which means that variable lx  is true at least at one of 

the time-steps between currt  and the first time-step from currt  when variable 

cx  becomes true, inclusive. This is equivalent to the PSL expression lx  
before_ .cx  The PSL expression lx  before_ cx  can be represented by 

{0, , ( ) 1}.ct event x∆ = ∃ −K  
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•  ( ),ct event x∆ =  which means that variable lx  has to be true at the first time-
step when cx  becomes true. This is equivalent to the PSL expression 

_ ( ) .c lnext event x x  
For Boolean, i.e. non-temporal, variables 0.t∆ =  
Table 1 shows examples on how temporal relationships in THLDDs map to 

PSL expressions. 
In addition, we use the notion of endt  as a special value for the upper bound of 

the time range, denoted above by ;k  endt  is the final time-step that occurs at the 
end of simulation and is determined by one of the following cases: 
•  number of test vectors 
•  the amount of time provided for simulation 
•  simulation interruption 

The special values for the time range bounds (i.e. ( )cevent x  and )endt  are 
supported by the HLDD-based assertion checking process. In the proposed 
approach the design simulation, which calculates simulation trace, precedes 
assertion checking process. In practice, endt  is the final time-step of the pre-
stored simulation trace.  

Note, that THLDD is an extension of HLDD, defined in Section 2, as it 
includes temporal relationships functions. The main purpose of the proposed 
temporal extension is transferring additional information and giving directives to 
the HLDD simulator that will be used for assertions checking. 

 
4.3. PSL  assertions  conversion  to  THLDDs 

 
The first step in the conversion process is parsing a PSL assertion of interest 

into elementary entities, containing one operator only. The hierarchy of operators 
is determined by the PSL operators precedence specified by the IEEE1850 
Standard. The second step is generation of a THLDD representation for the 
assertion. This process in turn consists of two stages. The first stage is 
preparatory and consists of a PPG (Primitive Property Graphs) library creation 
for elementary operators. The second stage is recursive hierarchical construction 
of a THLDD graph for a complex property using the PPG library elements. 
 

Table 1. Temporal relationships in THLDDs 
 

PSL expression Formal semantics THLDD construct Φ 

next_a[j to k] x x holds at all time-steps between tj and tk x∆t=∀ {j,...,k} 
next_e[j to k] x x holds at least once between tj and tk x∆t=∃ {j,...,k} 
next[k] x x holds at k time-steps from tcurr x∆t=k 
x until_ xc x holds at all time-steps between tcurr and 

the first time-step from tcurr where xc 
holds 

x∆t=∀ {0,...,event(x
c 
)} 

x before_ xc x holds at least once between tcurr and the 
first time-step from tcurr where xc 
holds 

x∆t=∃ {0,...,event(x
c 
)} 

next_event(xc) x x holds at the first time-step from tcurr 
where xc holds 

x∆t=event(x
c 
) 
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A PPG should be created for every PSL operator supported by the proposed 
approach. All the created PPGs are combined into one PPG Library. The library 
is extensible and should be created only once. It implicitly determines the 
supported PSL subset. The method currently supports only weak versions of PSL 
FL LTL-style operators. However, by means of the supported operators a large 
set of properties, expressed in PSL, can be derived. Primitive property graph is 
always a THLDD graph. That means it uses HLDD model with the proposed 
above temporal extension and has a standard interface. 

Figure 7 shows examples of primitive property graphs for two PSL operators 
next_e and logical implication ->. 

The construction of complex THLDD properties is performed in the top-down 
manner. The process starts from the operators with the lowest precedence, 
forming the top level. Then their operands that are sub-operators with higher 
precedence recursively form lower levels of the complex property. For example, 
always and never operators have the lowest level of precedence and consequently 
their corresponding PPGs are put to the highest level in the hierarchy. The sub-
properties (operands) are step-by-step substituted by lower level PPGs until the 
lowest level, where sub-properties are pure signals or HDL operations. 

Let us consider a sample PSL property: 
gcd_ready: assert always((not ready) and (a=b) -> next_e[1 to 3](ready)). 

The resulting THLDD graph, describing this property, is shown in Fig. 8. 
 
 

 
 
 
 
 
 
 
 

 

Fig. 7. Primitive property graphs for two of PSL operators. 
 
 

 
 
 
 
 
 
 
 

Fig. 8. A THLDD representation of the PSL property gcd_ready. 
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The construction of the property gcd_ready implies usage of the four PPGs. 
The nodes in the final THLDD contain signal variables and an HDL expression 
(a = b). 

 
4.4. HLDD-based  assertion  checking 

 
The process of HLDD-based assertion checking implies the existing HLDD 

simulator functionality (Algorithm 1) and its extension for assertion checking 
presented by Algorithm 2. 

In the current implementation, HLDD-based assertion checking is a two-step 
process. First the DUV has to be simulated (Algorithm 1, Section 2.3), which 
calculates the simulation trace. This trace is a starting point for assertion 
checking that is performed in accordance with Algorithm 2 shown bellow. The 
process of checking takes into account temporal relationships information at the 
THLD nodes that represent an assertion. 

 

Algorithm 2. 
AssertionCheck() 
 For each diagram G in the model 
  For t=tmin...tmax 
   mCurrent = m0 ; tnow = t 
   xCurrent = Z(mCurrent)  
   Repeat  
    If tnow > tmax then  
     Exit 
    End if 
    Value = xCurrent at Φ(mCurrent,tnow)  
    mCurrent = mCurrent

Value 

    tnow = tnow+∆t
 

   Until mCurrent ∉  Mterm 
   Assign xG = xCurrent at time-step tnow 
  End for /* t= tmin...tmax */ 
 End for 
End AssertionCheck 

 

A general flow of the HLDD-based assertion checking process can be 
described as follows. The input data for the first step (simulation) are HLDD 
model representation of the design under verification and stimuli. This step 
results in a simulation trace, stored in a text file. The second step (checking) uses 
this data as well as the set of THLDD assertions as input. The output of the 
second step is the assertions checking results that include information about both 
the assertions coverage and their validity.  

The stored assertion validity data allows further analysis and reasoning of which 
combinations of stimuli and design states have caused fails and passes of the 
assertions. This data also implicitly contains information about the monitored asser-
tions coverage (i.e. assertion activity: “active” or “inactive”) by the given stimuli. 
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5. EXPERIMENTAL  RESULTS 
 
This section demonstrates experimental results for the discussed HLDD 

model applications for verification coverage analysis and assertion checking. The 
experiment benchmarks several designs from ITC’99 benchmarks family [23] and 
a design gcd which is an implementation of the greatest common devisor. 

Figure 9 shows comparison results obtained in [10] with the proposed 
methodology, based on different HLDD representations and coverage analysis, 
achieved by a commercial state-of-the-art HDL simulation tool from a major 
CAD vendor using the same sets of stimuli. 

As it can be seen, the reduced HLDDs with expanded conditional nodes allow 
equal or more stringent coverage evaluation in comparison to the commercial 
coverage analysis software. For three designs (b01, b06 and b09) more stringent 
analysis is achieved using HLDDs. The HLDD model allows increasing the 
coverage accuracy up to 13% more exact statement measurement and 14% 
branch measurement (b09 design). While minimized HLDD require less memory 
compared to the reduced type, they do not suit accurate coverage analysis. Please 
note, that a higher coverage percentage, reported by a coverage metric for the 
given stimuli, means the metric is less stringent compared to another showing 
more potential for stimuli improvement and thus being more accurate. 

Figure 10 demonstrates experimental results obtained in [8], where it was 
shown that HLDD-based coverage analysis has significantly lower (tens of times)   
 

 

 
 

Fig. 9. HLDD-based coverage analysis evaluation. 
 

 

 
 

Fig. 10. HLDD-based coverage analysis time overhead evaluation. 
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computation (i.e. measurement) time overhead compared to the same commercial 
simulator. 

The evaluation of HLDD-based assertion checking is demonstrated in Fig. 11. 
For the experimental results, performed in [22], a set of 5 realistic assertions has 
been created for each benchmark. The assertions were selected on the following 
basis: 
•  Different types of operators should be included (e.g. Boolean operators, 

implication, temporal operators including until); 
•  Different outcomes should result (fail, pass, both);  
•  The failure/pass frequency should vary (frequent, infrequent). 

For example the assertions selected for gcd design were the following: 
p1: assert always(((not ready) and (a = b)) -> next_e[1 to 3](ready)); 

p2: assert always (reset -> next next((not ready) until (a = b))); 

p3: assert never ((a /= b) and ready); 

p4: assert never ((a /= b) and (not ready)); 

p5: assert always( reset -> next_a[2 to 5](not ready)). 

The assertions used for the b00, b04, b09 benchmarks had the same temporal 
complexity as the ones listed for the gcd design. Each assertion has been 
checking 2–5 signals and besides an invariance operator (always or never) 
contained from 1 to 3 LTL temporal operators from Table 1. SERE have not been 
used as they are not currently supported. Both simulators were supplied with the 
same sequences of realistic stimuli providing a good coverage for the assertions. 

Figure 11 shows comparison of the assertion checking execution times 
between HLDD simulator and the commercial tool. The execution time values in 
the table are presented in seconds for 106 clock cycles of stimuli. Both tools have 
shown identical responses to the assertion satisfactions and violations 
occurrences. The conversion of the benchmarks representation from VHDL to 
HLDD has taken from 219 to 260 ms and conversion of the set of 5 assertions for 
each of the benchmarks from 14 to 19 ms, respectively. Please note, that these 
conversions should be performed only once for each set of DUV and assertions 
and they are comparable to the commercial CAD tools VHDL compilation times.   
 

 

 
 

Fig. 11. HLDD-based assertion checking evaluation. 
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During the experiments we have tried to use different number of time intervals 
with various sizes and have not observed any issues with scalability, however, 
proper experiments to evaluate the scalability issue are scheduled for the future. 

The presented experimental results show the feasibility of the proposed 
approach and a significant speed-up (2 times) in the execution time, required for 
design simulation with assertion checking by the proposed approach compared to 
the state-of-the-art commercial tool. 

 
 

6. CONCLUSIONS 
 
This paper has demonstrated several advantages of the application of high-

level decision diagrams for simulation-based verification. 
The paper has discussed an approach to the structural coverage analysis using 

HLDDs. In particular, statement, branch and condition coverage metrics have 
been considered in details. It is important to emphasize that all coverage metrics 
(i.e. statement, branch, condition or a combination of them) in the proposed 
methodology are analysed by a single HLDD simulation tool which relies on 
HLDD design representation model. Different levels of coverages are 
distinguished by simply generating a different level of HLDD (i.e. minimized, 
reduced, or hierarchical with expanded conditional nodes). 

An HLDD-based approach for assertion checking has also been demonstrated. 
The approach implies a temporal extension of HLDD model (THLDD) to support 
temporal operations inherent in IEEE standard PSL properties and also to directly 
support assertion checking. A hierarchical approach to generate THLDDs and 
basic algorithms for THLDD-based assertion checking were discussed. 

As a future work we see integration of these HLDD-based assertion checking 
and coverage measurement methods for the design error diagnosis and debug 
solutions. 
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Kõrgtaseme  otsustusdiagrammide  kasutamine  simuleerimisel  
põhinevas  riistvara  verifitseerimisel 

 
Maksim Jenihhin, Jaan Raik, Anton Chepurov ja Raimund Ubar 

 
On kirjeldatud kõrgtaseme otsustusdiagrammide (KTOD) eeliseid skeemide 

esitamiseks simuleerimisel põhineval digitaalriistvara verifitseerimisel. On vaa-
deldud selliseid verifitseerimise ülesandeid, nagu väidete kontroll ja verifitseeri-
mise katte mõõtmine. Esiteks on artiklis välja töötatud meetod KTOD mudelil 
põhinevaks verifitseerimise struktuurse katte analüüsiks. Traditsioonilistel mude-
litel põhinevate analoogidega võrreldes saavutatakse nimetatud meetodi abil katte 
mõõtmine kiiremini ja suurema täpsusega. Teiseks on esitatud uudne meetod 
verifitseerimise väidete kontrolliks, mis põhineb KTOD mudelil. Esitatud lähene-
mine annab temporaalse laienduse olemasolevale KTOD mudelile, mis on mõel-
dud IEEE Property Specification Language’i keeles esitatud omaduste toetami-
seks. Artiklis esitatud katsete tulemused tõestavad kirjeldatud meetodite raken-
datavust ja efektiivsust. 

 
 


