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Abstract. In this paper we give a short overview of the decision diagrams, and define a special
class of high-level decision diagrams (HLDD) for formal representation of digital systems.
We show how the HLDDs can be used for high-level verification of digital systems. For this
purpose, HLDDs are represented by characteristic polynomials as a canonical form of HLDDs.
The polynomials can be used for proving the equivalence between two HLDDs, which have the
same functionalities but may have different internal structures. Some possibilities are shown
how to cope with the complexity of the verification problem.
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1. INTRODUCTION

As the complexity of digital systems continues to increase, the traditional gate
level modelling of systems, especially for verification and test generation purposes,
has become obsolete. Economical and practical reasons have pushed the designers
to apply automatic test pattern generation at higher abstraction levels to implement
functional or hierarchical test strategies, or to approach design validation with the
goal to early identify and remove design errors at higher functional levels, saving
time and money. Thus many functional automated test pattern generators (ATPG)
have been proposed in the literature to generate effective test sequences at the
higher [1−3], behaviour [4,5] or functional register-transfer levels [6,7]. A special
case of functional techniques are ATPGs, based on perturbation of statements in
the digital circuit model using VHDL or RTL [8,9]. Hierarchical approach [10,11],
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compared to pure functional approach, lies in the possibility of constructing test
plans on higher levels and modelling faults on more detailed lower levels, which
results in better test quality.

The efficiency of high-level test generation for complex digital systems depends
essentially on selecting the diagnostic model of the system and the way how
to represent and handle the faults of the system. High-level functional ATPGs
can be divided into two main categories: random-based and deterministic. The
first set adopts simulation-based strategies, guided by genetic algorithms or other
probabilistic techniques [2,3]. They rely on functional fault models and simulation
of HDL descriptions (e.g. SystemC, VHDL, Verilog, etc.) of the design. These
ATPGs are fast, but they cannot guarantee high fault coverage and they tend to
generate very long test sequences. Deterministic ATPGs are based on mathematical
strategies to allow a complete exploration of the system’s state space [4,6,7,10,11],
thus covering corner cases, but they require a larger amount of timing and memory
resources.

In search for efficient high-level models, recently a number of papers has
been published on implementing assignment decision diagram (ADD) models [12]
combined with SAT methods to address register-transfer level (RTL) test pattern
generation [6,7]. A promising approach is to use high-level decision diagrams
(HLDD) [13] that, unlike ADDs, can be viewed as a generalization of binary
decision diagrams (BDDs). HLDDs allow modelling of different abstraction levels
from RTL to behavioural while ADDs are limited to RTL only. HLDDs have
proven to be an efficient model for simulation [14], fault modelling [15] and test
generation [10,11] as they provide for fast evaluation by graph traversal and for easy
identification of cause–effect relationships. Further improvements in using HLDDs
for high-level functional test generation were reached by combining HLDDs with
extended finite state machines (EFSM) [16,17].

Within the last two decades binary decision diagrams (BDD) have become the
state-of-the-art data structure in VLSI CAD for representation and manipulation
of Boolean functions [18−25]. They were introduced first in 1959 by C. Y. Lee
in the form of binary decision programs for representing digital circuits [18]. In
1976 the same model, called alternative graphs [19,20], was introduced for test
generation purposes. Independently the same model was introduced into the field
of test generation by Akers [21] under the name of BDDs. Today the theory of
BDDs is developing quickly with the main purpose of efficient manipulation of
logic expressions. The subset of BBDs, called structurally synthesized binary
decision diagrams (SSBDDs), represent directly in the graph the structural features
of circuits [19,20,26,27]. While traditionally BDDs are generated by Shannon’s
expansions, which allow to extract only the Boolean function of the logic circuit,
the SSBDDs are generated by a superposition procedure that extracts both, function
and data about structural paths of the circuit. This feature makes them preferable
for diagnosis related tasks like fault modelling, simulation, test generation and fault
location.
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HLDDs represent a generalization of SSBDDs for modelling the functions and
structure of digital systems on higher behaviour, functional or RTL abstraction
levels. HLDDs are an excellent way to represent cause–effect and effect–
cause relationships at higher levels of system abstraction as a basis for fault
diagnosis in technical systems. They allow to skip dedicated low-level technical
problems, related to semiconductor technology and to concentrate only on the high-
level logic abstractions to carry out diagnostic reasoning. This is the only way
how to handle today’s complex systems. Moreover, the test related procedures,
developed for SSBDDs, can be easily generalized for HLDDs to handle digital
systems, represented at higher levels. In [28] two methods for synthesis of
HLDDs were proposed. The first method is based on symbolic execution of
procedural descriptions, which corresponds to functional representation of the
system, e.g. on the behavioural level. The second one is based on iterative super-
position of HLDDs, and the created model corresponds to the high-level structural
representation of the system. The second method can be regarded as the generaliza-
tion of the superposition of SSBDDs [29].

An example of a structurally synthesized HLDD, which represents a RTL
data path of a digital system shown in Fig. 1 with functions of the components
in Table 1, is depicted in Fig. 2. Variables R1 and R2 represent registers, IN
represents the input bus, integer variables y1, y2, y3, y4 represent control signals,
M1,M2,M3 are multiplexers, and the functions R1 + R2 and R1 ·R2 represent
adder and multiplier, respectively. Each node in the HLDD represents a subcircuit
of the system (e.g. the nodes y1, y2, y3, y4 represent multiplexers and decoders).
The whole DD describes the behaviour of the input logic of the register R2. The
bold path in Fig. 2 shows the active mode of the system in the case of input control
vector (y1, y2, y3, y4) = (1, 0, 3, 2), which means that during this clock cycle
the system calculates the multiplication R2 = R1 ·R2. The structural relationships
between the HLDD and the original system are highlighted by dotted lines in Fig. 2.
The area in Fig. 2 denoted by R2 corresponds to the DD for the subcircuit R2,
consisting of register R2 with its input logic in Fig. 1; the area denoted by R2 +M3

corresponds to the composite DD for the subcircuit, consisting of components M2,
multiplier, M3 and R2, highlighted by dark colour in Fig. 1; the area, denoted
by c(M1), corresponds to the DD for the subcircuit consisting of the components
M1 and adder; finally, the area denoted by d(M2) corresponds to the DDs for the
subcircuit, consisting of the components M2 and multiplier.

Table 1. Functions of the blocks of system in Fig. 1

y1 M1/a y2 M2/b y3 M3/e y4 R2

0 R1 0 R1 0 M1 + R2 0 0
1 IN 1 IN 1 IN 1 R2

2 R1 2 M3

3 M2 ·R2
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Fig. 1. RTL data path of a digital system.

Fig. 2. HLDD for the system in Fig. 1.

In the HLDDs the internal nodes represent the control part of a system and the
terminal nodes represent the data manipulation part of the latter. In the general case
a system is described by a set of HLDDs, where each HLDD represents a controlled
input logic of a register.
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In this paper we will show how the HLDDs can be used for high-level
verification purposes (more precisely, for probabilistic equivalence checking), for
example in the cases when we have got two HLDD representations of a system:
(1) high level specification, and (2) high level implementation. We will describe
the diagrams by sets of characteristic polynomials and show how to use them in
practice. The idea to represent digital systems as polynomials is not new, one can
find similar ideas adapted for gate level models in papers [30,31]. An attempt to
move up to the higher levels was made in [32]. However, at these levels we do
not have such convenient and well-known formal representation of the system as
boolean expressions are for the gate level. Before strarting to compute a polynomial
we need an initial definition of the function it describes. The multivalued decision
diagrams proposed for this purpose in [32] is not the best choice: computing them
is the problem itself. This work combined with our previous paper [28] gives a
way to get the canonical form of the digital system at higher levels directly from its
description.

The paper is organized as follows. In Section 2 we give the formal definition
of HLDDs, in Section 3 we show the possibility of representing the HLDDs by
characteristic polynomials, which can be used as a canonical form of HLDDs. In
Section 4 we show how the characteristic polynomials can be used for proving the
equivalence between two HLDDs, which may have different internal structures.
Section 5 concludes the paper.

2. DEFINITION OF HLDD

In this section we define the objects being studied in the current article: HLDDs
and functions represented by them, further called HLDD functions.

Consider a digital system (Z, F ) as a network of subsystems or components
where Z is the set of variables (Boolean, Boolean vectors or integers), which
represent connections between components, inputs and outputs of the network. Let
Z = X ∪ Y , where X is the set of function arguments and Y is the set of function
values where Q = X ∩Y is the set of state variables. D(z) denotes the finite set of
all possible values for z ∈ Z and D(U) is the set of all possible vectors in U ⊆ Z.
Obviously, if U = {u1, . . . , un} then D(U) = D(u1) × . . . × D(un). Let F be
a set of digital functions: zk = fk(Zk) where zk ∈ Z, fk ∈ F , and Zk ⊂ Z (k
iterates over all elements in F ).

Definition 1. The high-level decision diagram representing the function
fk : D(Zk) → D(zk) is a directed acyclic graph G = (V, E) with one root node
and a set of terminal nodes, where:

– Each non-terminal node is labelled by some input or control variable x ∈
X ∪Q. We shall denote the variable of node v by xv.

– Each terminal node w is labelled by some function gw : D(Zw) → D(zk)
(possibly a constant or a single variable), where Zw ⊆ Zk.
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– Each edge e = (v, u) is labelled by some constant ce ∈ D(xv).
– Each two edges e1 = (v, u1) and e2 = (v, u2) going from the same source

node are labelled by different constants ce1 6= ce2 .
– If the node v is labelled by xv then the number of edges going from this node

is |D(xv)|.
Remark 1. Each BDD is HLDD as well, with two terminal vertices labelled by
constant functions 0 and 1, and D(x) = {0, 1} for every variable x.

We shall denote the set of terminal nodes by V T , the set of non-terminal nodes
by V N and the set of all successors of the node v by Γ(v). For non-terminal nodes
v ∈ V N an onto function exists between the values c ∈ D(xv) of labels xv and the
successors vc ∈ Γ(v) of v. By vc we denote the successor of v for the value xv = c.
The edge (v, vc), which connects nodes v and vc, is called activated iff there exists
an assignment xv = c. Activated edges, which connect vi and vj , make up an
activated path l(vi, vj) ⊆ V . An activated path l(v0, v

T ) from the root node v0 to
a terminal node vT is called full activated path and vT itself is activated terminal
node. Without loss of generality we assume further that each variable has at least
two values, i.e. ∀z ∈ Z, D(z) > 1.

Let S = X ∪ Q and let Di designate a subset of D(S), such that assignments
from it will activate the terminal node vT

i . Thus D(S) is being split to non-inter-
secting sets D1, ..., Dt, where t = |V T |. More formally,

t⋃

i=1

Di = D(S)
∧
∀i, j(i 6= j ⇒ Di ∩Dj = ∅).

Now it is easy to get an algebraic expression for the HLDD function fk. Let α ∈
D(S) be some assignment to input and control variables and χi : D(S) → {0, 1}
be the characteristic function of the set Di, i.e. χi(α1, . . . , αn) = 1 ⇔
(α1, . . . , αn) ∈ Di. We will use a formula

fk(Zk) = caset
i=1 χi(S) → gi(Zi) (1)

as a shorthand for the algorithm:

begin
if α ∈ D1 then fk(Zk) = g1(Z1) endif
. . .

if α ∈ Dt then fk(Zk) = gt(Zt) endif
end

Let us continue with some examples:

Example 1. An HLDD in Fig. 3 evaluates the next state of the variable C. In
this example Z = {C ′, A′, B′, q, xA, xB, xC}. The apostrophe means the previous
value of the variable. Depending on the values of q, xA, xB and xC , the next value
of C is its previous value C ′, negation C ′ or A′ + B′.
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Fig. 3. HLDD that evaluates the next state of the variable C.

3. CHARACTERISTIC POLYNOMIALS

There are two ways to generate an HLDD for some digital system: one based on
procedural description and another based on iterative superposition. These methods
are described in [28]. Further research on HLDD properties requires us to make
the following important assumption: each path in the diagram does not contain
any of the control variables twice. Diagrams generated by the first algorithm
really have such property. The second method can theoretically produce such
paths. If we encounter the same variable two times in a path, we can duplicate
all variables between the occurrencies of this variable and make an equivalent
diagram without such redundancies. Let a path contain nodes, labelled by variables
x0, x1, ..., xk, x0. We should produce a new diagram, where this chain would
be replaced by two new chains, x0, x1, ..., xk and x1, ..., xk, x0. The following
theorem will help us.

Theorem 1. Suppose an HLDD, containing a chain of non-terminal nodes labelled
by variables x0, x1, ..., xk, x0, was transformed in the following way:

– Remove nodes labelled x0, x1, ..., xk, x0.
– Add 2(k + 1) nodes labelled x1, ..., xk, x0 (the first chain) and x0, x1, ..., xk

(the second chain).
– All connections from and to the nodes of the first chain will remain the same.
– All connections from and to x0 occurence in the second chain will remain the

same.
– Connections from other nodes to x1, ..., xk in the second chain will be

removed.
Then the result is equivalent to the original diagram.

Proof. We shall prove that the second diagram contains all paths from the first one
that could be activated and vice versa. ⇒:

– Obviously, all paths not containing mentioned nodes remain unchanged.
– All paths containing the first occurrence of the x0 can be activated in the

second chain.
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– All paths containing the second occurrence of the x0 or only intermediate
nodes x1, ..., xk can be found in the first chain.

⇐: The similar check for all possible paths in our two chains shows that they can
be activated in the first diagram.

Example 2. Figure 4 illustrates the transformation described above. Some vertex
and all edge labels are not shown because they are not important. We have a path
x → y → z → x that is being split in two chains x → y → z and y → z → x.

Suppose now that we have two HLDDs, representing the same functionality.
They can look very different as the next examples illustrate.

Example 3. Figure 5 shows two HLDDs of the same function. The only difference
is how we evaluate this function. The first diagram represents the situation when we
first check the value of the variable X , then, if X equals 2, we check the Y value.
The second diagram displays the process of evaluation starting with checking Y .

Example 4. Figure 6, left side, shows the diagram with 4 non-terminal nodes
labelled by variables X, Y, Z. However, it is easy to see that the variable Y is
redundant in this case and the diagram from the right side without this variable is
the equivalent one.

Fig. 4. Removing duplicate variables.
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Fig. 5. Variables in different order.

Fig. 6. Redundant node.

Let us suppose we have two diagrams G1 and G2, with the same sets of control
variables and terminal nodes and wish to prove that they are equivalent. Actually it
means that the function (1) for both diagrams is the same. As the functions gi are
the same, we should compare the corresponding characteristic functions. Without
loss of generality we may assume that D(xi) = {1, . . . , |D(xi)|}. If not we may
define a bijective mapping h : D(zi) → {1, . . . , |D(xi)|} and use the values of this
function instead of their originals. Then the following theorem takes place.

Theorem 2. The characteristic function of the set Di, χi(S), can be represented
by a unique polynomial Pi : Qn → Q of degree at most

∑n
i=1 (|D(xi)| − 1) where

we have for each vector α = (α1, ..., αn) ∈ D(S)

χi(α1, ..., αn) = Pi(α1, ..., αn).

Proof. We have D(S) different vectors in Qn. The sought-for polynomial should
be equal to 1 for vectors from Di and to 0 for vectors from D(S)\Di. In numerical
analysis the Lagrange interpolation polynomial is well-known [33]: consider we
have measured the values for a function f : [a, b] → R at points x0, ..., xn, and
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obtained results are y0, ..., yn, then we can interpolate them to the whole segment
[a, b] by a polynomial of degree at most n:

f(x) ≈ P (x) =
n∑

i=0

yi
(x− x0)...(x− xi−1)(x− xi+1)...(x− xn)

(xi − x0)...(xi − xi−1)(xi − xi+1)...(xi − xn)
.

If f is a polynomial of such degree then we get the exact result, otherwise there
will be some error. Note that for x = x0, ..., xn we will always get the exact result:
P (xi) = yi = f(xi) and it is a polynomial of lowest degree that gives such result.
This is the property we are interested in the current paper. Although in numerical
analysis textbooks only the case of one-variable function is usually studied, these
results can be easily transferred to the multiple-variable case. So, our sought-for
polynomial Pi is the Lagrange polynomial that evaluates to 1 for each vector from
Di and to 0 for each vector from D(S)\Di:

Pi(x1, ..., xn) =
∑

(α1,...,αn)∈Di

n∏

j=1

|D(xj)|∏

k=1
k 6=αj

xj − k

αj − k
. (2)

The degree of this polynomial is at most
∑n

i=1 (|D(xi)| − 1). Let us prove that this
is the only polynomial of such degree.

– The basis. Let n = 1. Assume we have 2 polynomials, P (x1) and Q(x1),
deg P = deg Q = |D(x1)| − 1 and ∀(i ∈ 1..|D(x1)|) P (i) = Q(i). Then
the polynomial P −Q has |D(x1)| roots, from 1 to |D(x1)|, which could be
only in case P ≡ Q.

– The induction step. The proof is similar to the basis case one: assume we
have 2 polynomials, P (x1, ..., xn) and Q(x1, ..., xn), deg P = deg Q =∑n

i=1 (|D(xi)| − 1). After assigning values to x1 we get |D(x1)| pairs
of (n − 1)-variable polynomials. They are pairwise equal by induction
hypothesis. Thus, the polynomial function P − Q : Q → Q[x2, ..., xn] of
degree at most |D(x1)|−1 has |D(x1)| roots inQ[x2, ..., xn]. Thus, P ≡ Q.

Corollary 1. Two diagrams G1 and G2 are equivalent iff they have equal sets
of control variables, terminal nodes and the polynomial representations (2) of
characteristic functions for any two corresponding terminal nodes are the same.

We shall call the right side of formula 2 the characteristic polynomial of the
node vT

i . The Algorithm 1 shows how to get such polynomials for a certain
diagram. Here we shall prove that it is correct.

Theorem 3. The Algorithm 1 produces the set of characteristic polynomials for the
diagram G.
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Algorithm 1. Evaluation of characteristic polynomials.

Input: HLDD G
Output: The set of characteristic polynomials for G
we shall evaluate polynomials node by node. A polynomial
for node v will be denoted by Pv;
order all nodes in G topologically. Let T be an array of ordered nodes;
PT [0] = 1;
for v ∈ T do

Pv = 0;
end
for v ∈ T do

for parentnode w of v do
i = c(w,v);

Pv += Pw

∏|D(w)|
j=1
j 6=i

xw−j
i−j ;

end
end
return {Pv|v ∈ V T }

Proof. Let W be a set of all paths from the root node to some terminal node vT .
Each path w ∈ W activated by the assignment (xv1 = α1, ..., xvl

= αl) will be
represented in the resulting polynomial by the following summand:

l∏

j=1

|D(xvj )|∏

k=1
k 6=ij

xvj − k

αj − k
. (3)

(This can be easily proved by induction). The resulting polynomial will be the sum
of these summands over all paths from W . As we have assumed in the beginning
of the chapter, all variables in w are different. So, l ≤ n. The only difference
between summands in (2) and (3) is the bound of the first product sign: generally,
the path w should not contain all variables; some of them may be missing. This
means that one path actually represents |D(r1) × ... × D(rn−l)| assignments
{(xv1 = α1, ..., xvl

= αl, r1 = αl+1, ..., αn−l = in)|αm ∈ D(rm−l), l < m ≤ n}
where {r1, ..., rn−l} = S\{xv1 , ..., xvl

}. But we have

∑

(αl+1,...,αn)∈D(r1)×...×D(rn−l)




n−l∏

j=1



|D(xj)|∏

k=1
k 6=αj

xj − k

αj − k





 = 1. (4)

This is the Lagrange polynomial that evaluates to 1 for all possible values from
D(r1) × ... × D(rn−l). The simplest polynomial with such property is the
constant 1, so they should coincide. Multiplying this polynomial with our summand
gives the sum of D(r1) × ... × D(rn−l) summands, each representing certain
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assignment for the whole set of variables. Finally, adding them together results
in the formula (2) (none of the summands will appear twice, because all paths have
the same source node and thus assignments of corresponding paths will differ for
at least one variable; otherwise they would never branch off).

Example 5. Let us now find the characteristic polynomials for HLDD from
Example 1. First of all we change the labels of edges labelled by 0 to 5 for the
one going from node q and to 2 for others. We have 4 paths to the first terminal
node: (q = 5), (q = 1), (q = 3, xC = 1), (q = 4, xA = 2). Thus,

P1(q, xA, xB, xC) =
(q − 1)(q − 2)(q − 3)(q − 4)
(5− 1)(5− 2)(5− 3)(5− 4)

+
(q − 5)(q − 2)(q − 3)(q − 4)
(1− 5)(1− 2)(1− 3)(1− 4)

+
(q − 5)(q − 1)(q − 2)(q − 4)(xC − 2)
(3− 5)(3− 1)(3− 2)(3− 4)(1− 2)

+
(q − 5)(q − 1)(q − 2)(q − 3)(xA − 1)
(4− 5)(4− 1)(4− 2)(4− 3)(2− 1)

= −1
6
q4xA − 1

4
q4xC +

3
4
q4 +

11
6

q3xA + 3q3xC − 53
6

q3

−41
6

q2xA − 49
4

q2xC +
143
4

q2 +
61
6

qxA

+
39
2

qxC − 173
3

q − 5xA − 10xC + 31.

For the second node we have two paths (q = 2, xB = 2) and (q = 3, xC = 2), so
the second polynomial will be

P2(q, xA, xB, xC) =
(q − 5)(q − 1)(q − 3)(q − 4)(xB − 1)
(2− 5)(2− 1)(2− 3)(2− 4)(2− 1)

+
(q − 5)(q − 1)(q − 2)(q − 4)(xC − 1)
(3− 5)(3− 1)(3− 2)(3− 4)(2− 1)

= −1
6
q4xB +

1
4
q4xC − 1

12
q4 +

13
6

q3xB − 3q3xC +
5
6
q3

−59
6

q2xB +
49
4

q2xC − 29
12

q2 +
107
6

qxB − 39
2

qxC

+
5
3
q − 10xB + 10xC .

Finally, paths (q = 2, xB = 2) and (q = 4, xA = 1) give us the third polynomial:
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P3(q, xA, xB, xC) =
(q − 5)(q − 1)(q − 3)(q − 4)(xB − 2)
(2− 5)(2− 1)(2− 3)(2− 4)(1− 2)

+
(q − 5)(q − 1)(q − 2)(q − 3)(xA − 2)
(4− 5)(4− 1)(4− 2)(4− 3)(1− 2)

=
1
6
q4xA +

1
6
q4xB − 2

3
q4 − 11

6
q3xA − 13

6
q3xB + 8q3

+
41
6

q2xA +
59
6

q2xB − 100
3

q2 − 61
6

qxA − 107
6

qxB

+56q + 5xA + 10xB − 30.

4. PRACTICAL USAGE OF CHARACTERISTIC POLYNOMIALS

A skeptically minded reader, after looking at Eq. (2), may notice that the evalua-
tion of such polynomial for a large modern digital system would take huge amount
of time. This is true. However, we can get a lot of useful information about the
function without evaluating it directly in analytical form. Here we are giving an
algorithm that can be used in HLDD verification and is residing in complexity
class P . It evaluates the coefficients of lower degrees. Before we provide it we
should agree on mapping from D(z) to Z. Generally, each mapping is good except
the ones containing zeroes. Multiplication by zero will lose information about some
paths. Thus, for example in case of D(z) = 0, 1, ..., |D(z)| − 1 it is better to use
mapping h(z) = z + 1. Indeed, assume 0 ∈ D(z) and we need to evaluate the
constant term. In this case all assingnments with z 6= 0 will produce summands

Algorithm 2. Evaluating polynomial coefficients of degrees ≤ k.
Input: HLDD G, maximal degree k
Output: Set of polynomials, one per each terminal node, that contain members of the

characteristic polynomials with degree ≤ k
order all nodes in G topologically. Let T be an array of ordered nodes;
PT [0] = 1;
for v ∈ T do

Pv = 0;
end
for v ∈ T do

for parentnode w of v do
i = c(w,v);

Pv += Pw

∏|D(w)|
j=1
j 6=i

xw−j
i−j ;

if Pv contains coefficiens of degree > k delete them;
end

end
return {Pv|v ∈ V T }
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containing factor z in Eq. (2). The constant terms of these summands are equal
to 0, so they are not taken into account when we evaluate the last coefficient of the
whole polynomial.

Once we have chosen the proper mapping we can use Algorithm 2 to calculate
all coefficients of degrees ≤ n. This method cannot allow us to be 100% confident
that our two diagrams are equivalent but if they are not then it can be found very
quickly. We continue with an example.

Example 6. Let us introduce an error to the diagram in Fig. 3. For instance, let the
edge (xB, A′+B′) now point to the first terminal node, C ′, as it is shown in Fig. 7.
The characteristic polynomial of the third terminal node remains the same, while 2
others will change:

P err
1 (q, xA, xB, xC) =

(q − 1)(q − 2)(q − 3)(q − 4)
(5− 1)(5− 2)(5− 3)(5− 4)

+
(q − 5)(q − 2)(q − 3)(q − 4)
(1− 5)(1− 2)(1− 3)(1− 4)

+
(q − 5)(q − 1)(q − 2)(q − 4)(xC − 2)
(3− 5)(3− 1)(3− 2)(3− 4)(1− 2)

+
(q − 5)(q − 1)(q − 2)(q − 3)(xA − 1)
(4− 5)(4− 1)(4− 2)(4− 3)(2− 1)

+
(q − 5)(q − 1)(q − 3)(q − 4)(xB − 1)
(2− 5)(2− 1)(2− 3)(2− 4)(2− 1)

= −1
6
q4xA − 1

6
q4xB − 1

4
q4xC +

11
12

q4 +
11
6

q3xA

+
13
6

q3xB + 3q3xC − 11q3 − 41
6

q2xA − 59
6

q2xB

−49
4

q2xC +
547
12

q2 +
61
6

qxA +
107
6

qxB

+
39
2

qxC − 151
2

q − 5xA − 10xB − 10xC + 41,

P err
2 (q, xA, xB, xC) =

(q − 5)(q − 1)(q − 2)(q − 4)(xC − 1)
(3− 5)(3− 1)(3− 2)(3− 4)(2− 1)

=
1
4
q4xC − 1

4
q4 − 3q3xC + 3q3 +

49
4

q2xC

−49
4

q2 − 39
2

qxC +
39
2

q + 10xC − 10.

As we see, even only the check for constant terms would detect the error.
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Fig. 7. HLDD with design error.

5. CONCLUSIONS

A novel method for probabilistic equivalence checking of digital systems was
proposed. It is based on representing the high-level dedcision diagrams as the
model of digital systems by the sets of characteristic polynomials. It was shown that
this representation is canonical, i.e. the sets of polynomials for equivalent diagrams
are the same up to the names of the variables. Computing the full set of polynomials
is unfeasible for large diagrams as it demands checking all assignments to the
control variables. To cope with this problem we have developed a polynomial
algorithm for probabilistic checking.

The algorithm calculates coeficients of low-degree summands up to the given
fixed degree k. If the coeficients do not coincide, then the HLDDs are definitely
different; if the coefficients coincide, then the HLDDs are with high probability
equivalent whereas the probability depends on the chosen degree of k. To prove
that the HLDDs are not equivalent is possible also by only comparing constant
terms of the polynomial. For instance, in Example 6, we can see, that even a small
erroneous change in the diagram is detectable by comparing constant terms.

The technique itself does not have limitations. However, for some classes of
digital systems, optimization techniques may be needed to create efficient HLDD
models, but this topic does not belong to the scope of the paper. Also, the
equivalence checking of the terminal node functions was left uncovered. The
general idea is that those functions are usually simple ones and can be verified
using gate level methods. Nevertheless we plan to look at those functions more
intently in our future research.
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Kõrgtaseme otsustusdiagrammide kanooniline esitus
Anton Karputkin, Raimund Ubar, Jaan Raik ja Mati Tombak

On antud lühike ülevaade otsustusdiagrammidest ja defineeritud spetsiaalne
kõrgtaseme otsustusdiagrammide (KTOD) mudel digitaalsüsteemide formaalseks
esituseks. On näidatud, kuidas on võimalik rakendada KTOD-mudelit digi-
taalsüsteemide verifitseerimiseks kõrgtasandil. Selleks defineeritakse kõigepealt
KTOD-mudeli kanooniline esitus karakteristlike polünoomide süsteemina. Edasi
on näidatud, kuidas saab polünoomide abil tõestada kahe KTOD-mudeli ekvi-
valentsust, kus mudeli funktsionaalsused on samad, kuid struktuurid võivad olla
erinevad. On näidatud võimalusi, kuidas verifitseerimise probleemi keerukusega
toime tulla.
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