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Abstract. Technology scaling into subnanometer range will create process variations that have 
impact on the overall manufacturing yield and quality. Smaller feature sizes permit to pack more 
functionality into a single chip. Increasing variability, complexity and communication bandwidth 
requirements will make the System-on-Chip designer’s goal, to design a fault-free system, a very 
difficult task. Shift from traditional bus-based systems to networked systems solves several design 
problems but requires more focus on communication modelling. In this work we propose a system-
level approach for communication modelling and synthesis. It makes possible to calculate precise 
communication delays that can be taken into account during application scheduling to avoid 
network congestions. We present a possible application of the proposed framework for scheduling 
fault-tolerant applications on non-reliable network. 
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1. INTRODUCTION 
 
The trends in previous and current decades in automotive industry show 

increasing number of system components (so-called electronic control units, 
ECUs) and also flexibility with regard to topology and transmission support 
redundancy [1]. One luxury car includes more than 100 ECUs that form a 
distributed system and have different safety and dependability requirements. In 
the environment, where a lot of safety-critical actions are made by the system in 
real time without human intervention, dependability plays an important role. 

Similar trends can be seen also in the consumer electronics area. The future of 
chip systems (System-on-Chip, SoC) will resemble more computer networks than 
traditional chips. At the same time there is an increasing demand for higher 
computational power and complexity of the systems. Take, for example, 
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telecommunication devices. The 3G mobile phones are not used only for voice 
calls and SMS – they are more versatile providing a large range of diverse 
functionalities. Limited throughput and bus lengths set limitations to the system 
design and to the number of system modules. To bridge the design and 
technology gap, the Network-on-Chip (NoC) paradigm has been proposed. NoC 
looks similar to computer networks and offers to a SoC designer a flexible, 
scalable and unified layered communication platform. NoC provides intellectual 
property (IP) reuse and decouples computation from the communication. In 
addition, new integration methodologies have enabled new 3D architectures, 
where the dies are stacked into 3-dimensional structures, thus providing even 
higher densities and complexity. 3D NoC architectures are emerging as a 
promising solution for high-performance multi-core systems on chip. They have 
clear advantages over more conventional planar counterparts in terms of system 
level performance metrics like throughput and latency [2]. 

Such SoCs and NoCs are centrepieces of many modern embedded systems, 
which can be found everywhere, thus having major influence on our way of life. 
Unfortunately, as technologies advance and semiconductor process dimensions 
shrink into the nanometer and subnanometer range, a high degree of sensitivity to 
defects begins to impact overall yield and quality [3]. The 2007 International 
Technology Roadmap for Semiconductors (ITRS) [4] states that relaxing the 
requirement of 100% correctness for devices and interconnects may dramatically 
reduce costs of manufacturing, verification and test. Such a paradigm shift is 
likely forced by technology scaling that leads to more transient and permanent 
failures of signals, logic values, devices and interconnects. It means that in 
consumer electronics, for example, where the reliability has not been a major 
concern so far, the design process has to be changed. Otherwise, there is a high 
loss in terms of faulty devices due to problems stemming from the nanometer and 
subnanometer manufacturing process. 

NoC paradigm requires a shift in the design methodology – instead of a 
conventional vertical design, focusing mainly on optimizations at register-
transfer-level (RTL), the NoC designer concentrates on the system level. At 
higher abstraction levels, the NoC designer has a much wider selection of design 
alternatives that will affect the final design. Independently from design 
methodology, the system-level design consists of several major tasks, as depicted 
in Fig. 1 [5]. System-level design (marked with gray background) starts with 
system modelling and architecture selection. Once the hardware platform is 
fixed, the software functions need to be extracted from the specification and 
mapped to the available hardware. Scheduling produces a valid execution order 
for the software functions [5]. 

The paper is structured as follows. First, motivation and the NoC design 
paradigm are described in Section 2. Next, system-level design flow is 
introduced in Section 3. Thereafter, communication synthesis is explained in 
Section 4, followed by task graph scheduling with dependability requirements in 
Section 5. Finally, we conclude our work in Section 6. 
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Fig. 1. System-level design flow. 
 

 
2. MOTIVATION  AND  THE  NoC  DESIGN  PARADIGM 

 
There has been a lot of research made on system reliability in different 

computing domains by employing data encoding (Hamming, Berger code, cyclic 
codes), duplicating system components (triple modular redundancy), software-
based fault tolerance techniques (signatures, watchdogs, checkpointing, memory 
protection codes). The research areas mostly either have had focus on low-level 
hardware reliability or have covered macro-distributed systems. Due to future 
design complexities and technology scaling, it is infeasible to concentrate only to 
low-level reliability analysis and improvement in embedded system design. ITRS 
states that the future holds new requirements for the SoC design flow, notably 
tool support for higher abstraction levels in both digital and analogue flows [4]. 
We should fill the gap by looking at the application level reliability analysis and 
improvement. We have to assume that the manufactured devices might contain 
faults and the application, running on the system, must be aware that the 
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underlying hardware is not perfect. NoC platform provides flexibility to tolerate 
faults and guarantee system reliability. 

SoC is traditionally based on a bus architecture, where system modules 
(central processing unit, CPU), digital signal processor (DSP), etc exchange data 
via a central bus. When the number of components increases rapidly, we have a 
situation where the clock signal can not be distributed over the entire SoC during 
one clock cycle. To overcome the clock distribution problem, the NoC paradigm 
has been proposed that essentially is a distributed system. Point-to-point connec-
tions (circuit switching), common to SoC, is replaced in NoC by dividing the 
messages into packets (packet switching). Each component stores its state and 
exchanges data autonomously with others. Such systems are called in literature 
globally asynchronous locally synchronous (GALS) systems. Having multiple 
different network routes available for data transmission makes NoC adaptive – to 
balance the network load, for instance. 

The NoC design paradigm has two good properties – predictability and 
reusability. Throughput, electrical properties, design and verification time are 
easier to predict due to the regular structure of the NoC. We can connect to the 
network any IP component that has the appropriate network interface. The NoC 
paradigm does not set any limits to the number of components. The components 
and also the communication platform are reusable – designer needs to design, 
optimize and verify them once. The layered network architecture provides the 
needed communication and network services enabling the functionality reuse [6]. 

The NoC paradigm has many advantages for designers: 
•  it enables the separation of communication structure and computation 

resources, 
•  NoC can deal with a large amount of computation at higher speed, 
•  NoC architecture is more flexible and scalable than other architectures [7]. 

An example NoC design flow, based on Philips Athereal platform [8], is 
shown in Fig. 2. The design flow input consists of the NoC topology specifica-
tion, network interface constraints and communication platform constraints 
(latency, throughput). First, the topology is selected and the mapping of IP ports 
on the network interface ports is determined. Based on the results, the corres-
ponding hardware platform (VHDL code) is generated. One intermediate step is 
throughput and latency calculation and verification. The results from previous 
steps can be used for SystemC simulation or for generating the NoC con-
figuration code [8]. The Athereal design flow contains necessary steps for con-
figuring the NoC platform parameters but it does not contain dependability 
analysis and design. 

The communication platform limitations, data throughput, reliability and 
Quality-of-Services (QoS) are more difficult to address in NoC architectures than 
in computer networks. The NoC components (memory, resources) are relatively 
more expensive, whereas the number of point-to-point links is larger on chip than 
the off-chip. On-chip wires are also relatively shorter than off-chip ones, thus 
allowing a much  tighter  synchronization than the off-chip.  On one hand,  only a  
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Fig. 2. Philips Athereal NoC design flow. 

 
 

minimum design overhead is allowed that is needed to guarantee reliable data 
transfer. On the other hand, the on-chip network must handle data ordering and 
flow control issues [9]. The packets might appear at the destination resource out 
of order – they need to be buffered and put into correct order. 

The properties of a traditional NoC platform are the following. 
Topology refers to the physical structure of the network (how the resources 

and switches are connected to each other). Our NoC topology is a m × n (2D) 
mesh with bidirectional links between the switches (Fig. 3). The regular topology 
is not the most efficient in terms of manufacturing, but allows easier routing 
algorithms and better predictability. Each switch is connected to 4 switches and 
to one resource. Resources can be heterogeneous. A resource can be memory,  
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processor core, DSP, reconfigurable block or any IP block that conforms to the 
network interface (NI). Every resource is connected to switch via resource 
network interface (RNI). The resources have unique addresses. 

Switching strategy determines how a message traverses its route. There are 
two main switching strategies: circuit switching and packet switching. Packet 
switching techniques include store-and-forward, virtual cut-through and worm-
hole switching. The techniques are different in message splitting to smaller units 
and buffering/forwarding schemes. 

Routing algorithm determines the routing paths the packets may follow 
through the network. The routing algorithms can be divided into deterministic 
and adaptive routing. In our work we are using the deterministic source-ordered 
XY routing algorithm. In XY routing the processing cores are numbered by their 
geographical coordinates. Packets are routed first via X and then via Y axis by 
comparing the source and destination coordinate. 

Flow control deals with network load monitoring and congestion resolution. 
Due to the limited buffers and throughput the packets may be blocked and flow 
control decides how to resolve this situation. The most common techniques are 
credit-based, on/off and ack/nack flow control. 

 
 

3. SYSTEM-LEVEL  DESIGN  FLOW 
 
We are employing a traditional system-level design flow that we have 

extended to include NoC communication modelling and dependability issues 
(Fig. 4). In our approach the input application model for the system-level design 
flow is the extended task graph (ETG). The ETG describes application tasks, 
their dependencies and the worst case execution time (WCET). NoC platform 
introduces communication latency that depends not only on message size but also 
on resource mapping and needs to be taken into account. Therefore the task graph 
captures, in addition to control dependencies, also communication details 
between the tasks. 

The architecture model, describing various NoC parameters (topology, size of 
NoC, switching/routing algorithm, channels and their parameters), is also given. 
The third part of the input information contains the application dependability 
requirements – number of faults to be tolerated on processing cores during one 
execution and number of faults to be tolerated on communication links during 
each data transmission. 

Once the tasks have been mapped to the architecture, the constructive task 
scheduling starts. It consists of communication synthesis and task scheduling that 
are described in greater detail below. If dependability and other design require-
ments are met, the lower levels of HW/SW co-design processes continue. Other-
wise changes are needed in the architecture or in the mapping. 
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Fig. 4. Our system-level design environment. 
 
 

4. COMMUNICATION  SYNTHESIS  AND  SCHEDULING 
 
To meet the required level of dependability, the designed system must be 

predictable. One of the main bottlenecks in application performance estimation 
for NoCs with hard real-time requirements is the unpredictability of communica-
tion latencies when using traditional task graph based models [10]. As introduced 
in Section 3, the communication latency depends not only on message size but 
also on the resource mapping and routing algorithm being used. In several 
research papers the average or worst case communication delay has been con-
sidered. Papers [11] and [12] approximate communication delay without consider-
ing the congestions. Authors of [13] use the term compatible communication and 
try to avoid congestions during task graph scheduling. However, they have 
customized the scheduling process, not the communication model. In [14] the 
worst case communication delay is calculated. The approach proposed in [15] 
divides communication events into scenarios. In [16] upper bounds (blocking 
included) are calculated for network delay. Authors of [17], similarly to [16], are 
trying to estimate the worst case communication delay. One of the key compo-
nents of our dependable scheduling framework is communication synthesis; its 
main purpose is to calculate hard communication deadlines that are represented 
by communication delay (CD) and guide the scheduling process. In our approach 
we keep the communication network design margin as low as possible and avoid 
overdimensioning. Another design aspect is the ratio of modelling speed and 
accuracy. A communication schedule could be extracted by simulating the 
application on a NoC simulator, but the simulation speed will be the limiting 
factor. 

The main reason why the simplified communication model does not work is 
rather simple – it does not take into account that different flow control units 
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(packages, flits) may travel using different routes and therefore their latencies 
may differ. In Fig. 3, an example task graph and its mapping onto three pro-
cessing units are presented. Task t1 is mapped onto PU1, t3 onto PU2, and tasks t2 
and t4 are mapped onto PU4. It can be seen that communication c1 (from t1 to t2) 
takes two links but c2 (from t3 to t4) takes only one link. Moreover, the physical 
links that the communication traverses are shared resources. It means that in 
addition to calculating the communication delays, we need to avoid network 
congestions. It should be noted that the actual routes will depend on how the 
tasks are mapped and which routing approach is used. 

A traditional task graph does not allow describing communication latencies 
that depend on various parameters such as topology, routing, switching 
algorithms, etc., and need to be calculated after task mapping and before the task 
graph scheduling. In [18] the authors proposed a task graph extension with 
detailed communication dependencies employing virtual cut-through switching 
with deterministic source-ordered XY routing. The basic idea is to cover with the 
task graph not only the tasks but also the flow control units. That is, all 
communication edges between tasks are transformed into sequences of nodes 
representing flow control units on the communication links. Edges represent 
dependencies between tasks and/or flow control units. Such an approach assumes 
that both tasks and communication are already mapped, i.e., it is known which 
tasks are mapped onto which resources and which data-transfers are mapped onto 
which links. Of course, different routing strategies will give different com-
munication mapping but all information needed for scheduling is captured in the 
extended task graph. We have generalized the approach presented in [18] and 
made it compatible with wormhole switching and wormhole switching with 
virtual channels. 

Input for scheduling is the extended task graph, where the tasks are mapped 
onto resources. Our proposed approach can be used with arbitrary scheduling 
algorithm, although the schedules in this paper are produced by using list 
scheduling. First, we will calculate the priorities of the tasks based on mobility. 
Mobility is defined as the difference between task ASAP (as-soon-as-possible) 
and ALAP (as-late-as-possible) schedules. Once a communication task is ready 
to be scheduled we start the communication synthesis sub-process. Depending on 
the selected switching method, some of the flow control units must be scheduled 
strictly to the subsequent time slots. In wormhole switching, the header flits 
contains the routing information and builds up the communication path, meaning 
that when the header flit goes through a communication link, the body flits must 
follow the same path. Also, when a header flit is temporarily halted, e.g., because 
of the traffic congestion, the following flits in downstream routers must be halted 
too. This sets additional constraints for the communication synthesis. The 
constraints – fixed order and delay between some of the nodes – are similar to the 
restrictions, used in pipelined scheduling [19]. 

One way to solve this is to have a specialized scheduler that takes into account 
that (communication) nodes must be scheduled in a certain order. For instance, 
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the list based scheduling (see, e.g., [19]) can take this into account with fine-tuned 
priorities – in addition to the traditional priorities (distance from the sink, 
mobility, etc.), these priorities should be fine tuned in the way that guarantees 
that flits of a package are transferred one after another. The main problem with 
such a model is that it is not general and each scheduler must be tuned, i.e., 
essentially pipelined. Another way is to perform communication synthesis and 
introduce additional nodes and edges in the original task graph. The nodes 
represent flow control units, while edges represent the dependencies between 
them. Figure 5 depicts the communication synthesis sub-process for communica-
tion (messages) c1 between tasks t1, t2 and c2 between tasks t3, t4 using wormhole 
switching. The variable size message is divided into bounded size packets. As a 
result, we can see that communication c1 consists of one and c2 of two packets. A 
packet is further divided into three type of control flow units (flits) – header (H), 
body (B) and tail (T). Typically there is only one H and T flit, but many B flits. 
The flit pipeline is built for all links the communication traverses. An important 
difference between wormhole switching compared to virtual cut-through is the 
contention handling. Once we have started the communication synthesis sub-
process and find out that header flit of the package will conflict with some 
already scheduled flit on the corresponding link we need to halt the package sub-
mission. The body flit B1 of communication c1 on link 1 (Fig. 5) depends after  
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communication synthesis explicitly on the header flit (H) on the link 2. 
Combined with traditional priority scheduling to handle network resource 
conflicts (e.g., list scheduling), the body flit will be scheduled after the header flit 
has been sent and requirements of the wormhole switching are met. 

The main benefit of the proposed model is that when the task graph has been 
transformed, we can calculate the communication delay for each communication 
task. Currently we take into account only the transmission time between the 
network links. The start-up latency (time required for packetization, copying data 
between buffers) and inter-router delay are static components that for sake of 
simplicity are considered as 0 delay. Another benefit is the generalization of the 
communication modelling – the communication is explicitly embedded in natural 
way into the task graph. The communication task graph model can be easily 
extended also for wormhole switching with virtual channels. The virtual channels 
are implemented in terms of separate input/output buffers in routers for each 
virtual channel and a Time Division Multiple Access (TDMA) method for  
shared channel access. The proposed approach does not suffer also from the 
destination contention problem, thus eliminating the need for buffering at the 
destination. 

We have developed a software application that supports our system-level 
design flow and scheduling framework. We have performed several tests to 
evaluate different aspects of the approach described in this paper. We have used 
synthetic task graphs with 500, 750 and 1000 tasks mapped on different NoC 
architectures. Random task mapping to processing units have been used. Table 1 
describes the NoC architecture parameters of the experiments. Figures 6 and 7 
show scaling of our approach in terms of application and NoC size. When the 
number of tasks or NoC cores increases linearly, complexity increase of the 
extended task graph is near to linear. The increase is slighter for virtual cut-
through switching than for wormhole. It is because in virtual cut-through, the 
flow control unit is a packet but in wormhole switching it is a flit. Figure 8 
depicts how NoC size has impact on the schedule length. When the NoC size 
(available processing cores) increases, the schedule length decreases. 

 
 

Table 1. NoC architecture parameters of the experiments 
 

Parameter name Value 

NoC operating frequency 500 MHz 
Link bit-width 32 bit 
Flit size, packet size 64 bit, 512 bit 
Packet header size 20 bit 
Link bandwidth 16 Gbit/s 
Topology and routing algorithm 2D Mesh, XY routing 
Mapping Random 
NoC size (if not noted differently) 5 × 5 
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Fig. 6. Application size impact on ETG complexity (mapped on 5 × 5 NoC). 
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Fig. 7. NoC size impact on ETG complexity (source application with 1000 tasks). 
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5. TASK  GRAPH  SCHEDULING  WITH  DEPENDABILITY  
REQUIREMENTS 

 
In [20] the impact of the transient faults in a microprocessor system is 

described. Three different error detection mechanisms are used – signature, 
Watchdog Timer and Error Capturing Instruction (ECI) mechanism. Signature is 
a technique where each or set of operations are assigned with a pre-computed 
“checksum” that indicate whether a fault has occurred during those operations. 
Watchdog Timer is a technique where the program flow is periodically checked 
for presence of faults. Watchdog Timer can monitor for example execution time 
of the processes or to calculate periodically “checksums” (signatures). In case of 
the ECI mechanism, redundant machine instructions are inserted into main 
memory to detect control flow errors (CFE). 

Once a fault is detected with one of the techniques above, it can be handled by 
a fault tolerance mechanism. The author of [21] describes the following software-
based fault tolerance mechanisms: re-execution, rollback recovery with check-
pointing and active/passive replication. Re-execution restores the initial inputs of 
the task and executes it again. Time penalty depends on the task length. Rollback 
recovery with checkpointing mechanism reduces the time overhead – the last 
non-faulty state (so called checkpoint) of a task has to be saved in advance and 
will be restored if the task fails [21]. It requires checkpoints to be designed into 
application that is not a deterministic task. Active and passive replication utilizes 
spare capacity of other computational nodes [21]. Paper [22] describes fault-
tolerant routing schemes in macro-distributed networks. 

Network-on-Chip fault tolerance has been covered by several authors. The 
authors of [23] propose a fast and computationally lightweight paradigm for the 
on-chip communication, based on an error-detection and multiple-transmissions 
scheme. The key observation behind the strategy is that, at the chip level, the 
bandwidth is less expensive than in traditional networks because of existing high-
speed buses and interconnection fabrics that can be used for the implementation 
of a NoC. Therefore, we can afford to have more packet transmissions than in the 
previous protocols in order to simplify the communication scheme and to 
guarantee low latencies. Similar approach is proposed in [24]. According to 
paper [25], reliability problems can be avoided with physical autonomy, i.e., by 
constructing the system from simple, physically autonomous cells. The electrical 
properties and logical correctness of each cell should be subject to verification by 
other autonomous cells that could isolate the cell if deemed erroneous (note that 
self-diagnosis is insufficient, because the entire cell, including the diagnostic 
unit, may be defect) [25]. Papers [26–28] concentrate on NoC interconnect, topology 
and routing algorithms. These are some example techniques for improving 
reliability in dependable systems. They have been widely used in either bus-
based embedded, macro distributed systems or cover lower layers of NoC. Our 
objective is to extend these techniques to the system level, to provide design 
support at  early  stages of the  design  flow.  The  application  should  be  able  to  
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Fig. 9. Application schedule in NoC. 
 
 
tolerate transient or intermittent faults. We are not currently considering 
permanent faults that need a somewhat different approach and can be handled by 
re-scheduling and re-mapping of the application on a NoC. 

Paper [21] describes scheduling and optimization of fault-tolerant embedded 
systems in bus-based systems. The work considers faults only in computational 
tasks. The communication fault tolerance is not taken into account. Additionally, 
in bus-based systems the task mapping does not have such influence on 
communication delays as in NoC. 

The application schedule without recovery slacks can be seen in Fig. 9. Once 
the task t3 has finished, it initiates the data transfer c2 that sends one packet over 
link 2. Communication between task t1 and t2 is denoted by c1 that passes link 1 and 
link 2. As mapping of the tasks influences communication latencies, it is important 
to note that although both tasks send one packet to the destination node, the 
transfer from task t1 to t2 takes more time to complete. In hard real-time dependable 
systems, the predictable communication delays are crucial. Once a fault occurs, the 
system will apply a recovery method that might finally require re-scheduling of the 
application. To analyse the fault impact on the system, we need to have informa-
tion how a fault affects the task execution and communication delays. 

In our approach we assume that each NoC processing and communication 
node is capable of detecting faults (signatures) and executing corrective actions 
(re-execution, re-submission). We assign the recovery slacks and schedule the 
application using shifting-based scheduling. Shifting-based scheduling is an 
extension of the transparent recovery against single faults [21]. A fault, occurring 
on one computation node, is masked to other computation nodes. It has impact 
only on the same computation node. In shifting-based scheduling, the start time 
of communication is fixed. It means that we do not need a global real-time 
scheduler. The local scheduler controls the task execution on processing node 
and will switch to a contingency schedule in case of fault occurrence. An 
example is depicted in Fig. 10. We schedule the application tasks until we reach a 
communication task. Before freezing the communication start time, we will 
calculate the recovery slack as 

 

tasks mapped to the same nodemax(WCET ) ,nk⋅                             (1) 
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Fig. 10. Shifting-based scheduling. 
 

 
where nk  is the number of transient faults to be tolerated by given task .n  For 
example 1t  is assigned to tolerate one fault, adding 

 

1t
max(WCET ) 1,⋅                                              (2) 

 

recovery slack into the schedule. In similar way we can calculate the recovery 
slack for 3t  
 

3t
max(WCET ) 2.⋅                                              (3) 

 

For each flit transmission over a communication link we will assign a re-
submission slack time as 
 

,CD t⋅                                                       (4) 
 

where t  is the number of faults to be tolerated during transmission. 
Comparing the two schedules in Figs. 9 and 10, we can see that the schedule 

with recovery slacks is longer than without. When fault tolerance would not have 
been taken into account, we would have went for a shorter schedule that would 
have lead to a deadline miss in case of fault occurrence. Schedule, which was 
produced having dependability requirements, is longer but will tolerate the 
specified amount of faults and the calculated deadline is satisfied. 

The advantage of our approach is that we can take into account communica-
tion-induced latencies and fault effects already at very early stages of the design 
flow. The objective is to develop the proposed approach further and to produce 
an environment that can be used successfully for system level synthesis. It 
includes optimization of the communication synthesis and more efficient 
strategies for handling faults. 
 
 

6. CONCLUSIONS 
 

We have developed a framework for predictable communication synthesis in 
NoCs with hard real-time constraints. The framework models communication at 
the link level, using traditional task graph based modelling technique and 
supports various switching techniques. We have also demonstrated how our 
communication synthesis approach can be used in scheduling of dependable 
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NoC-based systems using, for example, shifting-based scheduling principles. In 
the future this work can be extended by developing more efficient scheduling 
heuristics, taking into account the specifics of on-chip networks. As our model-
ling approach provides detailed information about the communication then it is 
also possible to use different deterministic routing algorithms during the 
communication synthesis, in addition to the XY-routing algorithm, used in this 
paper. It is also important to address the routers buffer size optimization problem. 
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Süsteemitaseme  kommunikatsiooni  süntees  ja  usaldusväärsuse  

parendamine  kiipvõrkudel  põhinevates  süsteemides 
 

Mihkel Tagel, Peeter Ellervee ja Gert Jervan 
 
Pooljuhttehnoloogia areng nanostruktuuride suunas on kaasa toonud olukorra, 

kus tehnoloogiliste protsesside varieerumisel on toodete kvaliteedile ja tootlusele 
märgatav mõju. Samas muutuvad komponendid väiksemaks ja ühele kiibile on 
võimalik pakkida üha rohkem funktsionaalsust. Eelmainitud põhjustel on vea-
vabade kiipsüsteemide loomine muutunud väga keerukaks ülesandeks. Liikumine 
traditsiooniliselt arvutuspõhiselt mudelilt kommunikatsioonipõhisele mudelile 
aitab mõningaid probleeme lahendada. Käesolevas töös on vaadeldud süsteemi-
tasemel lähenemist kommunikatsiooni modelleerimisele ja sünteesile keerukatel 
kiipvõrkudel põhinevates kiipsüsteemides. Kirjeldatud lähenemine võimaldab 
täpselt välja arvutada kommunikatsioonile kuluvat aega, mis on ülesannete pla-
neerimisel esmaoluline, et vältida kiipvõrgu ülekoormatust. Samuti on demonst-
reeritud esitatud lähenemise üht võimalikku rakendust, mis lubab mitteusaldus-
väärset kiipvõrku kasutades veakindlaid rakendusi planeerida.  


