
 23

Estonian Journal of Engineering, 2010, 16, 1, 23–38 doi: 10.3176/eng.2010.1.05

System-level communication synthesis and dependability
improvements for Network-on-Chip based systems

Mihkel Tagel, Peeter Ellervee and Gert Jervan

Department of Computer Engineering, Tallinn University of Technology, Raja 15, 12618 Tallinn,
Estonia; {mihkel.tagel, peeter.ellervee, gert.jervan}@ati.ttu.ee

Received 28 October 2009, in revised form 2 February 2010

Abstract. Technology scaling into subnanometer range will create process variations that have
impact on the overall manufacturing yield and quality. Smaller feature sizes permit to pack more
functionality into a single chip. Increasing variability, complexity and communication bandwidth
requirements will make the System-on-Chip designer’s goal, to design a fault-free system, a very
difficult task. Shift from traditional bus-based systems to networked systems solves several design
problems but requires more focus on communication modelling. In this work we propose a system-
level approach for communication modelling and synthesis. It makes possible to calculate precise
communication delays that can be taken into account during application scheduling to avoid
network congestions. We present a possible application of the proposed framework for scheduling
fault-tolerant applications on non-reliable network.

Key words: communication synthesis, Network-on-Chip, dependability, system-level design.

1. INTRODUCTION

The trends in previous and current decades in automotive industry show

increasing number of system components (so-called electronic control units,
ECUs) and also flexibility with regard to topology and transmission support
redundancy [1]. One luxury car includes more than 100 ECUs that form a
distributed system and have different safety and dependability requirements. In
the environment, where a lot of safety-critical actions are made by the system in
real time without human intervention, dependability plays an important role.

Similar trends can be seen also in the consumer electronics area. The future of
chip systems (System-on-Chip, SoC) will resemble more computer networks than
traditional chips. At the same time there is an increasing demand for higher
computational power and complexity of the systems. Take, for example,

 24

telecommunication devices. The 3G mobile phones are not used only for voice
calls and SMS – they are more versatile providing a large range of diverse
functionalities. Limited throughput and bus lengths set limitations to the system
design and to the number of system modules. To bridge the design and
technology gap, the Network-on-Chip (NoC) paradigm has been proposed. NoC
looks similar to computer networks and offers to a SoC designer a flexible,
scalable and unified layered communication platform. NoC provides intellectual
property (IP) reuse and decouples computation from the communication. In
addition, new integration methodologies have enabled new 3D architectures,
where the dies are stacked into 3-dimensional structures, thus providing even
higher densities and complexity. 3D NoC architectures are emerging as a
promising solution for high-performance multi-core systems on chip. They have
clear advantages over more conventional planar counterparts in terms of system
level performance metrics like throughput and latency [2].

Such SoCs and NoCs are centrepieces of many modern embedded systems,
which can be found everywhere, thus having major influence on our way of life.
Unfortunately, as technologies advance and semiconductor process dimensions
shrink into the nanometer and subnanometer range, a high degree of sensitivity to
defects begins to impact overall yield and quality [3]. The 2007 International
Technology Roadmap for Semiconductors (ITRS) [4] states that relaxing the
requirement of 100% correctness for devices and interconnects may dramatically
reduce costs of manufacturing, verification and test. Such a paradigm shift is
likely forced by technology scaling that leads to more transient and permanent
failures of signals, logic values, devices and interconnects. It means that in
consumer electronics, for example, where the reliability has not been a major
concern so far, the design process has to be changed. Otherwise, there is a high
loss in terms of faulty devices due to problems stemming from the nanometer and
subnanometer manufacturing process.

NoC paradigm requires a shift in the design methodology – instead of a
conventional vertical design, focusing mainly on optimizations at register-
transfer-level (RTL), the NoC designer concentrates on the system level. At
higher abstraction levels, the NoC designer has a much wider selection of design
alternatives that will affect the final design. Independently from design
methodology, the system-level design consists of several major tasks, as depicted
in Fig. 1 [5]. System-level design (marked with gray background) starts with
system modelling and architecture selection. Once the hardware platform is
fixed, the software functions need to be extracted from the specification and
mapped to the available hardware. Scheduling produces a valid execution order
for the software functions [5].

The paper is structured as follows. First, motivation and the NoC design
paradigm are described in Section 2. Next, system-level design flow is
introduced in Section 3. Thereafter, communication synthesis is explained in
Section 4, followed by task graph scheduling with dependability requirements in
Section 5. Finally, we conclude our work in Section 6.

 25

System specification

Modelling

Mapped and
scheduled model

System model

Mapping

Scheduling

Simulation and
verification

Simulation Hardware model

Hardware synthesis

Hardware blocksSimulation

Prototype

Fabrication

Simulation and
verification

Architecture selection

System architecture

Estimation

Software model

Software generation

Software blocks

Fig. 1. System-level design flow.

2. MOTIVATION AND THE NoC DESIGN PARADIGM

There has been a lot of research made on system reliability in different

computing domains by employing data encoding (Hamming, Berger code, cyclic
codes), duplicating system components (triple modular redundancy), software-
based fault tolerance techniques (signatures, watchdogs, checkpointing, memory
protection codes). The research areas mostly either have had focus on low-level
hardware reliability or have covered macro-distributed systems. Due to future
design complexities and technology scaling, it is infeasible to concentrate only to
low-level reliability analysis and improvement in embedded system design. ITRS
states that the future holds new requirements for the SoC design flow, notably
tool support for higher abstraction levels in both digital and analogue flows [4].
We should fill the gap by looking at the application level reliability analysis and
improvement. We have to assume that the manufactured devices might contain
faults and the application, running on the system, must be aware that the

 26

underlying hardware is not perfect. NoC platform provides flexibility to tolerate
faults and guarantee system reliability.

SoC is traditionally based on a bus architecture, where system modules
(central processing unit, CPU), digital signal processor (DSP), etc exchange data
via a central bus. When the number of components increases rapidly, we have a
situation where the clock signal can not be distributed over the entire SoC during
one clock cycle. To overcome the clock distribution problem, the NoC paradigm
has been proposed that essentially is a distributed system. Point-to-point connec-
tions (circuit switching), common to SoC, is replaced in NoC by dividing the
messages into packets (packet switching). Each component stores its state and
exchanges data autonomously with others. Such systems are called in literature
globally asynchronous locally synchronous (GALS) systems. Having multiple
different network routes available for data transmission makes NoC adaptive – to
balance the network load, for instance.

The NoC design paradigm has two good properties – predictability and
reusability. Throughput, electrical properties, design and verification time are
easier to predict due to the regular structure of the NoC. We can connect to the
network any IP component that has the appropriate network interface. The NoC
paradigm does not set any limits to the number of components. The components
and also the communication platform are reusable – designer needs to design,
optimize and verify them once. The layered network architecture provides the
needed communication and network services enabling the functionality reuse [6].

The NoC paradigm has many advantages for designers:
• it enables the separation of communication structure and computation

resources,
• NoC can deal with a large amount of computation at higher speed,
• NoC architecture is more flexible and scalable than other architectures [7].

An example NoC design flow, based on Philips Athereal platform [8], is
shown in Fig. 2. The design flow input consists of the NoC topology specifica-
tion, network interface constraints and communication platform constraints
(latency, throughput). First, the topology is selected and the mapping of IP ports
on the network interface ports is determined. Based on the results, the corres-
ponding hardware platform (VHDL code) is generated. One intermediate step is
throughput and latency calculation and verification. The results from previous
steps can be used for SystemC simulation or for generating the NoC con-
figuration code [8]. The Athereal design flow contains necessary steps for con-
figuring the NoC platform parameters but it does not contain dependability
analysis and design.

The communication platform limitations, data throughput, reliability and
Quality-of-Services (QoS) are more difficult to address in NoC architectures than
in computer networks. The NoC components (memory, resources) are relatively
more expensive, whereas the number of point-to-point links is larger on chip than
the off-chip. On-chip wires are also relatively shorter than off-chip ones, thus
allowing a much tighter synchronization than the off-chip. On one hand, only a

 27

Mesh specification
IP network
interface

constraints

Communication
specification

Topology creation Routing algorithmTopology mapping

NoC topology NoC setup
NoC performance

verification

SystemC
simulationVHDL generation

VHDL simulation

NoC config code
generation

Fig. 2. Philips Athereal NoC design flow.

minimum design overhead is allowed that is needed to guarantee reliable data
transfer. On the other hand, the on-chip network must handle data ordering and
flow control issues [9]. The packets might appear at the destination resource out
of order – they need to be buffered and put into correct order.

The properties of a traditional NoC platform are the following.
Topology refers to the physical structure of the network (how the resources

and switches are connected to each other). Our NoC topology is a m × n (2D)
mesh with bidirectional links between the switches (Fig. 3). The regular topology
is not the most efficient in terms of manufacturing, but allows easier routing
algorithms and better predictability. Each switch is connected to 4 switches and
to one resource. Resources can be heterogeneous. A resource can be memory,

PU3

RNI

R

PU4

RNI

R

PU1

RNI

R

PU2

RNI

R

2D Mesh Network-on-Chip

t1

t2

t3

t4
c1

t1

t2

t3

t4

begin

end

c1 c2

c2

Fig. 3. Example task graph.

 28

processor core, DSP, reconfigurable block or any IP block that conforms to the
network interface (NI). Every resource is connected to switch via resource
network interface (RNI). The resources have unique addresses.

Switching strategy determines how a message traverses its route. There are
two main switching strategies: circuit switching and packet switching. Packet
switching techniques include store-and-forward, virtual cut-through and worm-
hole switching. The techniques are different in message splitting to smaller units
and buffering/forwarding schemes.

Routing algorithm determines the routing paths the packets may follow
through the network. The routing algorithms can be divided into deterministic
and adaptive routing. In our work we are using the deterministic source-ordered
XY routing algorithm. In XY routing the processing cores are numbered by their
geographical coordinates. Packets are routed first via X and then via Y axis by
comparing the source and destination coordinate.

Flow control deals with network load monitoring and congestion resolution.
Due to the limited buffers and throughput the packets may be blocked and flow
control decides how to resolve this situation. The most common techniques are
credit-based, on/off and ack/nack flow control.

3. SYSTEM-LEVEL DESIGN FLOW

We are employing a traditional system-level design flow that we have

extended to include NoC communication modelling and dependability issues
(Fig. 4). In our approach the input application model for the system-level design
flow is the extended task graph (ETG). The ETG describes application tasks,
their dependencies and the worst case execution time (WCET). NoC platform
introduces communication latency that depends not only on message size but also
on resource mapping and needs to be taken into account. Therefore the task graph
captures, in addition to control dependencies, also communication details
between the tasks.

The architecture model, describing various NoC parameters (topology, size of
NoC, switching/routing algorithm, channels and their parameters), is also given.
The third part of the input information contains the application dependability
requirements – number of faults to be tolerated on processing cores during one
execution and number of faults to be tolerated on communication links during
each data transmission.

Once the tasks have been mapped to the architecture, the constructive task
scheduling starts. It consists of communication synthesis and task scheduling that
are described in greater detail below. If dependability and other design require-
ments are met, the lower levels of HW/SW co-design processes continue. Other-
wise changes are needed in the architecture or in the mapping.

 29

Application task
graph (ETG)

NoC architecture Task mapping

Mapping & Partitioning

Communication
synthesis

Schedule tasks

co
ns

tr
ai

nt
s

no
t s

at
is

fi
ed

co
ns

tr
ai

nt
s

no
t s

at
is

fi
ed

Lower levels of HW/SW Co-design

Constructive scheduling with
dependability

Fig. 4. Our system-level design environment.

4. COMMUNICATION SYNTHESIS AND SCHEDULING

To meet the required level of dependability, the designed system must be

predictable. One of the main bottlenecks in application performance estimation
for NoCs with hard real-time requirements is the unpredictability of communica-
tion latencies when using traditional task graph based models [10]. As introduced
in Section 3, the communication latency depends not only on message size but
also on the resource mapping and routing algorithm being used. In several
research papers the average or worst case communication delay has been con-
sidered. Papers [11] and [12] approximate communication delay without consider-
ing the congestions. Authors of [13] use the term compatible communication and
try to avoid congestions during task graph scheduling. However, they have
customized the scheduling process, not the communication model. In [14] the
worst case communication delay is calculated. The approach proposed in [15]
divides communication events into scenarios. In [16] upper bounds (blocking
included) are calculated for network delay. Authors of [17], similarly to [16], are
trying to estimate the worst case communication delay. One of the key compo-
nents of our dependable scheduling framework is communication synthesis; its
main purpose is to calculate hard communication deadlines that are represented
by communication delay (CD) and guide the scheduling process. In our approach
we keep the communication network design margin as low as possible and avoid
overdimensioning. Another design aspect is the ratio of modelling speed and
accuracy. A communication schedule could be extracted by simulating the
application on a NoC simulator, but the simulation speed will be the limiting
factor.

The main reason why the simplified communication model does not work is
rather simple – it does not take into account that different flow control units

 30

(packages, flits) may travel using different routes and therefore their latencies
may differ. In Fig. 3, an example task graph and its mapping onto three pro-
cessing units are presented. Task t1 is mapped onto PU1, t3 onto PU2, and tasks t2
and t4 are mapped onto PU4. It can be seen that communication c1 (from t1 to t2)
takes two links but c2 (from t3 to t4) takes only one link. Moreover, the physical
links that the communication traverses are shared resources. It means that in
addition to calculating the communication delays, we need to avoid network
congestions. It should be noted that the actual routes will depend on how the
tasks are mapped and which routing approach is used.

A traditional task graph does not allow describing communication latencies
that depend on various parameters such as topology, routing, switching
algorithms, etc., and need to be calculated after task mapping and before the task
graph scheduling. In [18] the authors proposed a task graph extension with
detailed communication dependencies employing virtual cut-through switching
with deterministic source-ordered XY routing. The basic idea is to cover with the
task graph not only the tasks but also the flow control units. That is, all
communication edges between tasks are transformed into sequences of nodes
representing flow control units on the communication links. Edges represent
dependencies between tasks and/or flow control units. Such an approach assumes
that both tasks and communication are already mapped, i.e., it is known which
tasks are mapped onto which resources and which data-transfers are mapped onto
which links. Of course, different routing strategies will give different com-
munication mapping but all information needed for scheduling is captured in the
extended task graph. We have generalized the approach presented in [18] and
made it compatible with wormhole switching and wormhole switching with
virtual channels.

Input for scheduling is the extended task graph, where the tasks are mapped
onto resources. Our proposed approach can be used with arbitrary scheduling
algorithm, although the schedules in this paper are produced by using list
scheduling. First, we will calculate the priorities of the tasks based on mobility.
Mobility is defined as the difference between task ASAP (as-soon-as-possible)
and ALAP (as-late-as-possible) schedules. Once a communication task is ready
to be scheduled we start the communication synthesis sub-process. Depending on
the selected switching method, some of the flow control units must be scheduled
strictly to the subsequent time slots. In wormhole switching, the header flits
contains the routing information and builds up the communication path, meaning
that when the header flit goes through a communication link, the body flits must
follow the same path. Also, when a header flit is temporarily halted, e.g., because
of the traffic congestion, the following flits in downstream routers must be halted
too. This sets additional constraints for the communication synthesis. The
constraints – fixed order and delay between some of the nodes – are similar to the
restrictions, used in pipelined scheduling [19].

One way to solve this is to have a specialized scheduler that takes into account
that (communication) nodes must be scheduled in a certain order. For instance,

 31

the list based scheduling (see, e.g., [19]) can take this into account with fine-tuned
priorities – in addition to the traditional priorities (distance from the sink,
mobility, etc.), these priorities should be fine tuned in the way that guarantees
that flits of a package are transferred one after another. The main problem with
such a model is that it is not general and each scheduler must be tuned, i.e.,
essentially pipelined. Another way is to perform communication synthesis and
introduce additional nodes and edges in the original task graph. The nodes
represent flow control units, while edges represent the dependencies between
them. Figure 5 depicts the communication synthesis sub-process for communica-
tion (messages) c1 between tasks t1, t2 and c2 between tasks t3, t4 using wormhole
switching. The variable size message is divided into bounded size packets. As a
result, we can see that communication c1 consists of one and c2 of two packets. A
packet is further divided into three type of control flow units (flits) – header (H),
body (B) and tail (T). Typically there is only one H and T flit, but many B flits.
The flit pipeline is built for all links the communication traverses. An important
difference between wormhole switching compared to virtual cut-through is the
contention handling. Once we have started the communication synthesis sub-
process and find out that header flit of the package will conflict with some
already scheduled flit on the corresponding link we need to halt the package sub-
mission. The body flit B1 of communication c1 on link 1 (Fig. 5) depends after

t 1

t 2

t 3

t 4

begin

end

H

H
B 1

T

B 1

T

link 1

link 2

c 1

B 2

B 2
B 3

B 3

c 2
H

B 2

T

B 1
H

B 2

T

B 1

Message c 1 (1 packet)
sent via link 1 and link 2

Message c 2 (2 packets)
sent via link 2

B 3

B 4

Fig. 5. Communication synthesis.

 32

communication synthesis explicitly on the header flit (H) on the link 2.
Combined with traditional priority scheduling to handle network resource
conflicts (e.g., list scheduling), the body flit will be scheduled after the header flit
has been sent and requirements of the wormhole switching are met.

The main benefit of the proposed model is that when the task graph has been
transformed, we can calculate the communication delay for each communication
task. Currently we take into account only the transmission time between the
network links. The start-up latency (time required for packetization, copying data
between buffers) and inter-router delay are static components that for sake of
simplicity are considered as 0 delay. Another benefit is the generalization of the
communication modelling – the communication is explicitly embedded in natural
way into the task graph. The communication task graph model can be easily
extended also for wormhole switching with virtual channels. The virtual channels
are implemented in terms of separate input/output buffers in routers for each
virtual channel and a Time Division Multiple Access (TDMA) method for
shared channel access. The proposed approach does not suffer also from the
destination contention problem, thus eliminating the need for buffering at the
destination.

We have developed a software application that supports our system-level
design flow and scheduling framework. We have performed several tests to
evaluate different aspects of the approach described in this paper. We have used
synthetic task graphs with 500, 750 and 1000 tasks mapped on different NoC
architectures. Random task mapping to processing units have been used. Table 1
describes the NoC architecture parameters of the experiments. Figures 6 and 7
show scaling of our approach in terms of application and NoC size. When the
number of tasks or NoC cores increases linearly, complexity increase of the
extended task graph is near to linear. The increase is slighter for virtual cut-
through switching than for wormhole. It is because in virtual cut-through, the
flow control unit is a packet but in wormhole switching it is a flit. Figure 8
depicts how NoC size has impact on the schedule length. When the NoC size
(available processing cores) increases, the schedule length decreases.

Table 1. NoC architecture parameters of the experiments

Parameter name Value

NoC operating frequency 500 MHz
Link bit-width 32 bit
Flit size, packet size 64 bit, 512 bit
Packet header size 20 bit
Link bandwidth 16 Gbit/s
Topology and routing algorithm 2D Mesh, XY routing
Mapping Random
NoC size (if not noted differently) 5 × 5

 33

0

10

20

30

40

50

60

0
100 000
200 000
300 000
400 000
500 000
600 000
700 000
800 000

500 750 1 000
Application size

Number of communication vertexes (Store-and-forward, Virtual-cut-through)

Number of communication vertexes (Wormhole)

Schedule calculation time (Store-and-forward, Virtual-cut-through)

Schedule calculation time (Wormhole)

Sc
he

du
le

 c
al

cu
la

ti
on

 ti
m

e,
 s

N
um

be
r

of
 c

om
m

un
ic

at
io

n
ve

rt
ex

es

Fig. 6. Application size impact on ETG complexity (mapped on 5 × 5 NoC).

0
20
40
60
80
100
120
140
160

0
200 000
400 000
600 000
800 000

1 000 000
1 200 000
1 400 000
1 600 000

3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

NoC size

Number of communication vertexes (Store-and-forward, Virtual-cut-through)

Number of communication vertexes (Wormhole)
Schedule calculation time (Wormhole)
Schedule calculation time (Store-and-forward, Virtual-cut-through)

Sc
he

du
le

 c
al

cu
la

ti
on

 ti
m

e,
 s

N
um

be
r

of
 c

om
m

un
ic

at
io

n
ve

rt
ex

es

Fig. 7. NoC size impact on ETG complexity (source application with 1000 tasks).

0
5 000
10 000
15 000
20 000
25 000
30 000
35 000
40 000
45 000
50 000

0
30 000
60 000
90 000

120 000
150 000
180 000
210 000
240 000

3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

NoC size

Number of communication vertexes (Virtual-cut-through)

Schedule length

Fig. 8. NoC size impact on schedule length (source application with 1000 tasks).

N
um

be
r

of
 c

om
m

un
ic

at
io

n
ve

rt
ex

es

Sc
he

du
le

 le
ng

th

 34

5. TASK GRAPH SCHEDULING WITH DEPENDABILITY
REQUIREMENTS

In [20] the impact of the transient faults in a microprocessor system is

described. Three different error detection mechanisms are used – signature,
Watchdog Timer and Error Capturing Instruction (ECI) mechanism. Signature is
a technique where each or set of operations are assigned with a pre-computed
“checksum” that indicate whether a fault has occurred during those operations.
Watchdog Timer is a technique where the program flow is periodically checked
for presence of faults. Watchdog Timer can monitor for example execution time
of the processes or to calculate periodically “checksums” (signatures). In case of
the ECI mechanism, redundant machine instructions are inserted into main
memory to detect control flow errors (CFE).

Once a fault is detected with one of the techniques above, it can be handled by
a fault tolerance mechanism. The author of [21] describes the following software-
based fault tolerance mechanisms: re-execution, rollback recovery with check-
pointing and active/passive replication. Re-execution restores the initial inputs of
the task and executes it again. Time penalty depends on the task length. Rollback
recovery with checkpointing mechanism reduces the time overhead – the last
non-faulty state (so called checkpoint) of a task has to be saved in advance and
will be restored if the task fails [21]. It requires checkpoints to be designed into
application that is not a deterministic task. Active and passive replication utilizes
spare capacity of other computational nodes [21]. Paper [22] describes fault-
tolerant routing schemes in macro-distributed networks.

Network-on-Chip fault tolerance has been covered by several authors. The
authors of [23] propose a fast and computationally lightweight paradigm for the
on-chip communication, based on an error-detection and multiple-transmissions
scheme. The key observation behind the strategy is that, at the chip level, the
bandwidth is less expensive than in traditional networks because of existing high-
speed buses and interconnection fabrics that can be used for the implementation
of a NoC. Therefore, we can afford to have more packet transmissions than in the
previous protocols in order to simplify the communication scheme and to
guarantee low latencies. Similar approach is proposed in [24]. According to
paper [25], reliability problems can be avoided with physical autonomy, i.e., by
constructing the system from simple, physically autonomous cells. The electrical
properties and logical correctness of each cell should be subject to verification by
other autonomous cells that could isolate the cell if deemed erroneous (note that
self-diagnosis is insufficient, because the entire cell, including the diagnostic
unit, may be defect) [25]. Papers [26–28] concentrate on NoC interconnect, topology
and routing algorithms. These are some example techniques for improving
reliability in dependable systems. They have been widely used in either bus-
based embedded, macro distributed systems or cover lower layers of NoC. Our
objective is to extend these techniques to the system level, to provide design
support at early stages of the design flow. The application should be able to

 35

t 1

Time

Processing unit 1

Processing unit 2

Processing unit 4

c 1

t 3

t 4

c 2

t 2

Link 1
Link 2

c 1 c 1
c 2 c 2 c 1 c 1 c 1

Fig. 9. Application schedule in NoC.

tolerate transient or intermittent faults. We are not currently considering
permanent faults that need a somewhat different approach and can be handled by
re-scheduling and re-mapping of the application on a NoC.

Paper [21] describes scheduling and optimization of fault-tolerant embedded
systems in bus-based systems. The work considers faults only in computational
tasks. The communication fault tolerance is not taken into account. Additionally,
in bus-based systems the task mapping does not have such influence on
communication delays as in NoC.

The application schedule without recovery slacks can be seen in Fig. 9. Once
the task t3 has finished, it initiates the data transfer c2 that sends one packet over
link 2. Communication between task t1 and t2 is denoted by c1 that passes link 1 and
link 2. As mapping of the tasks influences communication latencies, it is important
to note that although both tasks send one packet to the destination node, the
transfer from task t1 to t2 takes more time to complete. In hard real-time dependable
systems, the predictable communication delays are crucial. Once a fault occurs, the
system will apply a recovery method that might finally require re-scheduling of the
application. To analyse the fault impact on the system, we need to have informa-
tion how a fault affects the task execution and communication delays.

In our approach we assume that each NoC processing and communication
node is capable of detecting faults (signatures) and executing corrective actions
(re-execution, re-submission). We assign the recovery slacks and schedule the
application using shifting-based scheduling. Shifting-based scheduling is an
extension of the transparent recovery against single faults [21]. A fault, occurring
on one computation node, is masked to other computation nodes. It has impact
only on the same computation node. In shifting-based scheduling, the start time
of communication is fixed. It means that we do not need a global real-time
scheduler. The local scheduler controls the task execution on processing node
and will switch to a contingency schedule in case of fault occurrence. An
example is depicted in Fig. 10. We schedule the application tasks until we reach a
communication task. Before freezing the communication start time, we will
calculate the recovery slack as

tasks mapped to the same nodemax(WCET) ,nk⋅ (1)

 36

Fig. 10. Shifting-based scheduling.

where nk is the number of transient faults to be tolerated by given task .n For
example 1t is assigned to tolerate one fault, adding

1t
max(WCET) 1,⋅ (2)

recovery slack into the schedule. In similar way we can calculate the recovery
slack for 3t

3t
max(WCET) 2.⋅ (3)

For each flit transmission over a communication link we will assign a re-
submission slack time as

,CD t⋅ (4)

where t is the number of faults to be tolerated during transmission.
Comparing the two schedules in Figs. 9 and 10, we can see that the schedule

with recovery slacks is longer than without. When fault tolerance would not have
been taken into account, we would have went for a shorter schedule that would
have lead to a deadline miss in case of fault occurrence. Schedule, which was
produced having dependability requirements, is longer but will tolerate the
specified amount of faults and the calculated deadline is satisfied.

The advantage of our approach is that we can take into account communica-
tion-induced latencies and fault effects already at very early stages of the design
flow. The objective is to develop the proposed approach further and to produce
an environment that can be used successfully for system level synthesis. It
includes optimization of the communication synthesis and more efficient
strategies for handling faults.

6. CONCLUSIONS

We have developed a framework for predictable communication synthesis in
NoCs with hard real-time constraints. The framework models communication at
the link level, using traditional task graph based modelling technique and
supports various switching techniques. We have also demonstrated how our
communication synthesis approach can be used in scheduling of dependable

 37

NoC-based systems using, for example, shifting-based scheduling principles. In
the future this work can be extended by developing more efficient scheduling
heuristics, taking into account the specifics of on-chip networks. As our model-
ling approach provides detailed information about the communication then it is
also possible to use different deterministic routing algorithms during the
communication synthesis, in addition to the XY-routing algorithm, used in this
paper. It is also important to address the routers buffer size optimization problem.

REFERENCES

 1. Navet, N., Song, Y., Simonot-Lion, F. and Wilwert, C. Trends in automotive communication

systems. Proc. IEEE, 2005, 93, 1204–1223.
 2. Pande, P., Ganguly, A., Feero, B. and Grecu, C. Applicability of energy efficient coding

methodology to address signal integrity in 3D NoC fabrics. In Proc. 13th IEEE Inter-
national On-Line Testing Symposium (IOLTS 2007). Crete, Greece, 2007, 161–166.

 3. Chandramouli, R. Infrastructure IP design for repair in nanometer technologies. IEEE Design &
Test Computers, 2005, 22, 17.

 4. International Technology Roadmap for Semiconductors, 2007. URL: http://www.itrs.net/Links/
2007ITRS/2007_Chapters/2007_Design.pdf (29 Sept. 2009).

 5. Pop, P. Analysis and Synthesis of Communication-intensive Heterogeneous Real-time Systems.
Ph.D thesis, Linköping University, Sweden, 2003.

 6. Jantsch, A. and Tenhunen, H. Networks on Chip. Kluwer Academic Publishers, Boston, 2003,
9–15.

 7. Guang, L. Design of Frequency Controller for Minimizing Power Consumption in Network-on-
Chip. M.A. thesis, Royal Institute of Technology, Sweden, 2005.

 8. Bartels, C., Huisken, J., Goossens, K., Groeneveld, P. and Meerbergen, J. Comparison of an
aethereal network on chip and a traditional interconnect for a multi-processor DVB-T
system on chip. In Proc. IFIP International Conference on Very Large Scale Integration.
Nice, France, 2006, 80–85.

 9. Radulescu, A. and Goossens, K. Communication services for networks on chip. In Proc.
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS). 2002, vol. 2, 275–299.

10. Marculescu, R., Ogras, U. Y. Li-Shiuan Peh, Jerger, N. E. and Hoskote, Y. Outstanding
research problems in NoC design: system, microarchitecture, and circuit perspectives. IEEE
Trans. Computer-Aided Design of Integrated Circuits Systems, 2009, 28, 3–21.

11. Lei, T. and Kumar, S. A two-step genetic algorithm for mapping task graphs to a network on
chip architecture. In Proc. Euromicro Symposium on Digital System Design (DSD’03).
Belek – Antalya, Turkey, 2003, 180–187.

12. Marcon, C., Kreutz, M., Susin, A. and Calazans, N. Models for embedded application mapping
onto NoCs: timing analysis. In Proc. 16th IEEE International Workshop on Rapid System
Prototyping (RSP 2005). Montreal, Canada, 2005, 17–23.

13. Hu, J. and Marculescu, R. Communication and task scheduling of application-specific
networks-on-chip. Proc. IEEE, 2005, 152, 643–651.

14. Shin, D. and Kim, J. Power-aware communication optimization for networks-on-chips with
voltage scalable links. CODES + ISSS 2004. Stockholm, Sweden, 2004, 170–175.

15. Stuijk, S., Basten, T., Geilen, M., Ghamarian, A. H. and Theelen, B. Resource-efficient routing
and scheduling of time-constrained streaming communication on networks-on-chip. In
Proc. 9th EUROMICRO Conference on Digital System Design: Architectures, Methods and
Tools (DSD 2006). Dubrovnik, Croatia, 2006, 45–52.

16. Shi, Z. and Burns, A. Real-time communication analysis for on-chip networks with wormhole
switching networks-on-chip. In Proc. Second ACM/IEEE International Symposium on
Networks-on-Chip (NoCS 2008). Newcastle, UK, 2008, 161–170.

 38

17. Shin, D. and Kim, J. Communication power optimization for network-on-chip architectures.
J. Low Power Electronics, 2006, 2, 165–176.

18. Manolache, S. Analysis and Optimisation of Real-time Systems with Stochastic Behaviour. Ph.D
thesis, Linköping University, Sweden, 2005.

19. De Micheli, G. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York, 1994.
20. Miremadi, G. and Torin, J. Evaluating processor behaviour and three error-detection

mechanisms using physical fault-injection. IEEE Trans. Reliability, 1995, 44, 441–454.
21. Izosimov, V. Scheduling and Optimization of Fault-tolerant Distributed Embedded Systems.

Tech. Lic. thesis, Linköping University, Sweden, 2006.
22. Koren, I. and Krishna, C. Fault-Tolerant Systems. Morgan Kaufmann, San Francisco, 2007.
23. Dumitras, T. and Marculescu, R. On-chip stochastic communication. In Proc. Design,

Automation and Test in Europe Conference and Exhibition (DATE 2003). Munich,
Germany, 2003, 790–795.

24. Pirretti, M., Link, G. M., Brooks, R. R., Vijaykrishnan, N., Kandemir, M. and Irwin, M. J. Fault
tolerant algorithms for network-on-chip interconnect. In Proc. IEEE Computer Society
Annual Symposium on VLSI. Tampa, FL, USA, 2004, 46–51.

25. Valtonen, T., Nurmi, T., Isoaho, J. and Tenhunen, H. An autonomous error-tolerant cell for
scalable network-on-chip architectures. In Proc. 19th IEEE Nordic Event in ASIC Design
(NorChip 2001). Stockholm, Sweden, 2001, 198–203.

26. Yang Yu, Mei Yang, Yulu Yang and Yingtao Jiang. A RDT-based interconnection network for
scalable network-on-chip designs. In Proc. International Conference on Coding and
Computing (ITCC 2005). Las Vegas, NV, USA, 2005, vol. 2, 723–728.

27. Kariniemi, K. and Nurmi, J. Fault tolerant XGFT network on chip for multi processor system
on chip circuits. In Proc. International Conference on Field Programmable Logic and
Applications (FPLA 2005). Tampere, Finland, 2005, 203–210.

28. Murali, S., Atienza, D., Benini, L. and De Micheli, G. A multi-path routing strategy with
guaranteed in-order packet delivery and fault-tolerance for networks on chip. In Proc. 43rd
ACM/IEEE Design Automation Conference (DAC 2006). San Francisco, CA, USA, 2006,
845–848.

Süsteemitaseme kommunikatsiooni süntees ja usaldusväärsuse

parendamine kiipvõrkudel põhinevates süsteemides

Mihkel Tagel, Peeter Ellervee ja Gert Jervan

Pooljuhttehnoloogia areng nanostruktuuride suunas on kaasa toonud olukorra,

kus tehnoloogiliste protsesside varieerumisel on toodete kvaliteedile ja tootlusele
märgatav mõju. Samas muutuvad komponendid väiksemaks ja ühele kiibile on
võimalik pakkida üha rohkem funktsionaalsust. Eelmainitud põhjustel on vea-
vabade kiipsüsteemide loomine muutunud väga keerukaks ülesandeks. Liikumine
traditsiooniliselt arvutuspõhiselt mudelilt kommunikatsioonipõhisele mudelile
aitab mõningaid probleeme lahendada. Käesolevas töös on vaadeldud süsteemi-
tasemel lähenemist kommunikatsiooni modelleerimisele ja sünteesile keerukatel
kiipvõrkudel põhinevates kiipsüsteemides. Kirjeldatud lähenemine võimaldab
täpselt välja arvutada kommunikatsioonile kuluvat aega, mis on ülesannete pla-
neerimisel esmaoluline, et vältida kiipvõrgu ülekoormatust. Samuti on demonst-
reeritud esitatud lähenemise üht võimalikku rakendust, mis lubab mitteusaldus-
väärset kiipvõrku kasutades veakindlaid rakendusi planeerida.

