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Abstract. Tool replacement operations have a great influence over the cost of machined parts.
At present, the common criteria used to determine the tool life do not optimize the use of tools
and lead to significant economic losses. The main objective of this work is to define a new
procedure to improve the decision about the time for tool replacement. The approach followed
is based on digital images of the cutting edge that has already been explored in the literature.
The novelty of the present work relies on the use of contour signatures of the wear region as
the input to two techniques of classification, k-nearest neighbour and a neural network. The
influence of the signature size vector is also analysed. A total of 1383 flank wear images were
acquired and the error rate estimation was about 5%.
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1. INTRODUCTION

The influence that tool replacement operations have over the cost of production
in the scope of metal parts machining is highlighted by diverse authors [1−3]. This
fact is especially important in production facilities, where high productivity level is
required. The cost of tool replacement comprises not only the cost of tool inserts,
but also the indirect costs associated with non-productive periods due to the tool
replacement [4].

At present, the common criteria used to determine the time for tool replacement
lead to the use of tool inserts only for a fraction of their possible useful life, both in
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manual and unmanned operations. In manual processes, tool replacement depends
mainly on the machinist subjective criterion, which is based on experience.

In unmanned systems, the time for replacement is defined on the basis of
accumulated values for some production variables (cutting time, amount of pro-
duced parts).

The previous tool replacement criteria do not optimize the use of tools. They
lead to economic losses which can be significant in some applications. Wang
et al. [5] indicate that measurement of tool wear to determine its usefulness can
provide savings of 40% in tool costs.

The International Organization of Standardization (ISO) has included the
consideration of tool wear in some standards, mainly for the economic implications
which are derived from them. The approach adopted by ISO in the ISO3685
standard represents an advance with regard to the traditional industrial practice.
This standard defines threshold values for the wear level to be measured directly
over the worn area in the tool.

However, the main limitation of this approach is that these threshold values for
wear are too conservative [6]. Also, measurement of the dimensions, indicated in
the standard, is complex and requires interruption of the process.

The alternative method is based on the indirect measurement of wear. Imple-
mentation of indirect methods is very simple and does not require process inter-
ruption to evaluate the tool wear. However, the main drawback of these methods is
poor precision and reliability of the measurements, mainly due to the presence of
noise in acquired signals [6−9].

In contrast, direct methods are more reliable and offer higher accuracy of the
measurements.

At the present moment, computer vision is a sufficiently developed technology.
Its application to monitoring of cutting tools offers interesting possibilities as
indicated in [3,5,7,10−14].

The main objective of this paper is to obtain the tool life using a computer
vision system. The decision about the time for tool replacement (tool life) should
be made taking in consideration a more realistic approach than the previous ones.
Tool life is the period of time the tool is able to produce in-tolerance parts with
regard to dimensions, geometry and roughness.

The approach followed in this paper is based on the analysis of digital images
of the cutting edge to determine whether or not the tool wear is underneath the limit
of use. Contour signatures of the wear region were used to describe each insert.

This approach, based on the use and interpretation of digital images, is not
new. Some researchers have already used tool images to measure the wear. For
example, Kurada et al. [8] use gradient and texture operators and apply them to
digital images of worn tools; other authors [15−19] use vision techniques combined
with neural networks; Wang et al. [20] use the well-known exponents of Lipschitz;
Wang et al. [10] and Alegre et al. [11] use geometrical descriptors over tool images
to classify the tool wear.
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According to the followed approach, the metrics to be used is not specified
a priori, but it emanates from data extracted from the observation of the tool wear
phenomenon by means of digital images. The characterization of a wide group of
wear regions through image descriptors, based on the contour signature, provides
the support to an analysis of different wear states.

2. MATERIALS AND IMAGE PROCESSING

2.1. Materials and the machining process

Tests were done in a CNC parallel lathe. ANSI SAE 4340 and 4140 steel
cylinders (tempered and normalized) were machined by turning. Dimensions of
parts were 250 mm length and 90 mm diameter. Tools were tungsten carbide
covered inserts (CNMG 120404 MF235), rhombic, high tough and low wear
resistance, in order to avoid premature fracture and to increase the wear rate.
Machining parameters were selected with the same objective: cutting speeds
between 140 and 200 m/min, whereas feed rate of 0.2 mm/rev and cutting depth
of 2 mm remained constant.

The tool was disassembled and inspected at the end of each machining path.
The intensity of light and the focal distance were kept constant.

2.2. Image acquisition and processing

Images were acquired using a PULLNIX pe2015 b/w camera with 1/3" CCD.
Digitalization was carried out with a MATROX METEOR II card. The optical
system was made up of an OPTEM 70XL industrial zoom, an extension tube of 1X
and 0.5X/ 0.75X/ 1.5X/ 2.0X OPTEM lens. The lighting system was composed of
a FOSTEC DCR R©III regulated light source and a SCDI system of diffuse lighting
of NER SCDI-25-F0 to avoid shines. The lightening system provides diffused light
on the same camera axis and its location was established by means of a FOSTEC
quad bundle.

Image acquisition was carried out by using a specifically developed application
composed of three modules: set-up of the camera, set-up of the sequence and
acquisition of the image. These modules provide information of the capturing
device and allow the user to choose the resolution, the storage path and save the
images [11].

A total of 1383 tool flank wear images were acquired with this system. Each
image was pre-processed, applying filters, improving contrast and cropping the
region of interest [11]. An automatic segmentation was applied to obtain a binary
image required later in the description step (Fig. 1).
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(a) (b)

Fig. 1. Original (a) and segmented (b) images.

3. SHAPE DESCRIPTION USING SIGNATURES

A signature is a method that represents a contour using a one-dimensional
function. A signature consists of a vector, where each element contains the distance
from the centroid of the region to the pixels in the boundary.

A signature will be a good descriptor if it is invariant with respect to the loca-
tion, size and orientation of the object in the image. The size invariant is achieved
via signature normalization. With respect to location, our problem is not affected
by location changes and treatment of this invariant is not required. However, an
invariant to orientation signature is important since the starting point affects the
shape of the signature. In order to obtain always the same starting point, the
point nearest to the right-up corner of the image was chosen. This point is also
a characteristic point of the wear region.

The signature is generated using the binary image of the wear region (Fig. 2a).
Then, the region perimeter is obtained (Fig. 2b). The starting point of the signature
is computed (Fig. 3). Finally, the coordinates of the centroid are calculated (Fig. 4).

(a) (b)

Fig. 2. (a) Binary image; (b) perimeter.
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Fig. 3. Starting point of the signature.

Fig. 4. Coordinates of the centroid.

Original signature Resized to 100 values

Resized to 40 values
Fig. 5. Signatures.

The signature is computed as a vector, which contains so many elements as
there are pixels belonging to the contour. Each element of the vector contains
the distance between the centroid and the corresponding point of the boundary.
Finally, the vector is modified to obtain 40 and 100 element vectors, which are
normalized between 0 and 1. These modified vectors constitute the input to the
classifier (Fig. 5).
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4. EXPERIMENTAL RESULTS

A supervised classification has been carried out by labelling images according
to two different criteria, defined in the ISO3685 standard. The first criterion was
the VBB value, which represents the average width of the wear band in the tool
flank. The second criterion was the VBCmaxvalue, which is the width maximum
value of the wear band in the tool tip.

Experiments have been carried out with 124 flanks and a total of 1332 images
(545 with low wear and 787 worn).

Evaluation was carried out by 10-fold cross validation (sets split according to
flanks) and the results are the average over five iterations.

The former feature vectors have been classified applying two different methods.
The first one was the k-nearest neighbour (K-NN) with a ‘random sampling’
validation method and Euclidean distance. This makes it possible to compare the
results, obtained with the K-NN classification, with those obtained with the neural
network.

A perceptron multilayer neural network (MLP) was used with one node in
the output layer. Tool insert is classified in two clusters: low wear and high
wear. The optimum number of nodes in the hidden layer and the training cycles
have been selected empirically. The learning algorithm belongs to the group of
‘backpropagation’ algorithms, in particular to the Levenberg–Marquadt optimized
version.

The lower error rate, obtained with the VBCmax criterion (5.8%), was superior
to that obtained with the VBB criterion (5.1%). Table1 shows the errors obtained
with the 100 signature vector using the MLP and different combinations of nodes
and training cycles. The minimum error rate was 5.3% with 30 nodes in the hidden
layer and 300 cycles.

Table 1. MLP classification based on the VBB criterion and the 100 signature vector
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Table 2 shows the results, obtained with a 40 element signature, classified with
the MLP and the VBB criterion. It is noticeable that using the same classifier with
40 nodes and 300 cycles, the error rate (5.1%) is lower than in the previous case.

On the other hand, the error rates using the K-NN method with the 40 element
signature are again lower than those obtained with the 100 element signature
(Table 3). In this case, the minimum error rate (5.5%) is worse than the error
returned by the MLP neural network.

With regard to the signatures used, Table 4 shows that an adequate classification
is achieved with both signatures and the MLP neural network when comparing
with the label provided. Label 1 means that the wear is not excessive and the tool
belongs to class 1. When the wear is too high, the corresponding label is 0 and the
tool belongs to class 2.

The assignment is wrong when using the K-NN classification. Table 4 shows
that the result is wrong for the second flank image, which has label 1 but the
assignment is to class 0.

Table 2. MLP classification based on the VBB labelling criterion and the 40 signature vector

Table 3. k-nearest neighbour classification and VBB labelling criterion
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Table 4. Wear level estimation according to the VBB criterion and 40 and 100 signature vectors

5. CONCLUSIONS

A new method to estimate the wear level in cutting inserts is proposed.
Determination of the adequate time for replacement of the cutting tool is feasible
using a computer vision system and a neural network classifier.

It is remarkable that description of the wear region by means of a signature
vector with 40 elements is better than with a 100 element vector. Also, it is worth
mentioning that with a MLP neural network the error rates are lower than those
using the k-nearest neighbour classifier. Finally, the estimation according to the
VBB criterion is better than using the VBC criterion.

Therefore the best option to estimate the tool life of inserts is combining the
MLP neural network classifier, the 40 value signature and the VBB criterion.
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Kulumisjälje kontuuride kasutamise ja klassifitseerimise
meetodid metallide lõiketöötlemisel püsivusaja

optimeerimiseks

Enrique Alegre, Rocío Alaiz-Rodríguez, Joaquín Barreiro ja Jonatan Ruiz

Lõikeriista vahetusoperatsioonidel on töödeldud detailide maksumusele oluline
mõju. Seni kasutusel olevad üldised kriteeriumid püsivusaja määramiseks ei
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võimalda optimeerida lõikeriistade kasutamist ja see viib märkimisväärsete majan-
duslike kaotusteni. Antud uurimuse peamiseks eesmärgiks oli luua uus meetod
lõikeriista vahetusaja määramiseks. Lahenduses on lähtutud lõikeserva digitaalsest
kujutisest, mis on kirjandusest tuntud. Antud töös on kasutatud erisusena k-lähima
naabri ja neurovõrgu jaoks sisendina kulumisjälje kontuure. Lisaks on analüüsitud
kontuuri kuju ja suuruse mõju. Eksperimendis katsetatud 1383 kulumisjälje pildi
puhul oli vea hinnang ligikaudu 5%.
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