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Abstract. Approximate travelling wave solutions to linear, one-dimensional wave equations with 
varying coefficients (the case of an inhomogeneous medium) are usually found using asymptotic 
procedures such as the WKB approach. For certain conditions put on the coefficients, this 
procedure leads to exact solutions. We show that such exact travelling wave solutions exist for a 
limited class of strongly inhomogeneous media and prove the existence and uniqueness of such 
waves. Using the obtained solutions, the solution of the relevant Cauchy problem is expressed in 
elementary functions. This approach enables a detailed and straightforward analysis of the 
processes of wave transformation and reflection in a specific type of strongly inhomogeneous 
media.  
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1. INTRODUCTION 

 
The solutions of the type ( , ) ( ),u x t f x t= −  where x  is a spatial coordinate 

and t  is time, are usually called travelling waves. The analysis of these solutions 
has become a specific and rapidly developing subject of non-linear mathematics 
and wave physics [1–6]. Their existence usually means that the set of underlying 
equations is invariant with respect to the shift of the coordinate x  and time .t  In 
the one-dimensional case, the initial partial differential equations (PDEs) can be 
reduced to a set of ordinary differential equations (ODEs). Qualitative methods 
of the oscillation theory can be applied to find the travelling wave solutions of 
the resulting ODEs and to investigate their properties [7–9]. In particular, travel-
ling wave solutions (such as different kinds of solitons, cnoidal and shock waves, 
etc.) can be found in explicit form for well-known equations of non-linear 
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physics, such as the Burgers, Korteweg-de Vries, Gardner and Klein–Gordon 
equations [10,11]. 

Generally an exact travelling wave solution does not exist if the medium is 
inhomogeneous along the direction of wave propagation. The inhomogeneity is 
reflected in the mathematical problems through variable coefficients of the 
governing equations. If amplitudes or phases of the solutions can be assumed as 
slowly varying quantities, asymptotic approaches such as the WKB approxima-
tion can be applied to find approximate wave solutions [12–16]. 

There are a few examples [17,18] when asymptotic WKB solutions for certain 
variable coefficients are exact solutions. Such solutions may be interpreted as 
travelling waves in inhomogeneous media. Although the fact of their existence 
has been mentioned several decades ago [17,18], their interpretation as travelling 
waves as well as their physical relevance is still under discussion in the physical 
literature. Ginzburg [17] argues that any solution in the form of the ansatz 

exp ( ),u A i tω= − Ψ  where Ψ  is the function of the position, is a travelling 
wave. On the other hand, Brekhovskikh [18] claims that all solutions to wave 
equations can be, in principle, presented in this form, yet not all such solutions 
are travelling waves. To the knowledge of the authors, very little is known about 
their properties and even the set of such solutions has not been rigorously 
established. We address the problem of the existence and the properties of such 
exact analytical solutions of the generic one-dimensional wave equation with 
variable coefficients. In other words, we attempt a rigorous description of all 
possible exact travelling wave solutions in strongly inhomogeneous one-
dimensional (1D) media. The key advance from this study is the proof that such 
solutions exist only for a very limited class of (strongly) inhomogeneous media. 
It is shown that all existing solutions in the form ( , ) ( ) ( ( ))u x t A x f t x= − Ψ  to the 
1D wave equation in such media are actually travelling (but not necessarily 
monochromatic) waves. 

The paper is organized as follows. Different types of the wave equations with 
variable coefficients are discussed in Section 2. The method for finding travelling 
wave solutions within an asymptotic approach is presented in Section 3. In 
Section 4 we describe a rigorous, constructive proof of the uniqueness of these 
solutions. The dynamics of such solutions is illustrated, based on a particular 
solution of the Cauchy problem, in Section 5. Conclusions are summarized in 
Section 6. 
 

 
2. WAVE  EQUATION 

 
The generic 1D wave equation with variable coefficients can be presented in 

three different forms: 
 

2 2
2

2 2
( ) 0,

u u
c x

t x

∂ ∂− =
∂ ∂

                                        (1) 



 222

2
2

2
( ) 0,

u u
c x

x xt

 ∂ ∂ ∂− = ∂ ∂∂  
                                    (2) 

 

2 2 2

2 2

[ ( ) ]
0,

u c x u

t x

∂ ∂− =
∂ ∂

                                       (3) 

 

where ( , )u x t  is the wave function and ( )c x  is an arbitrary continuous or 
discontinuous function having the meaning of the local wave celerity. The scope 
and conditions applied to the function ( ),c x  and appropriate boundary conditions 
for Eqs. (1)–(3) may widely vary depending on the particular physical problem. 
This will be discussed later. Generally, the wave function is supposed to be 
bounded in space (except possibly at the boundary points) but it is not necessarily 
smooth in the class of generalized functions, as is customary when solving 
hyperbolic equations. Obviously, Eq. (3) can be reduced to Eq. (1) by the simple 
change of variables 2( , ) ( ) ( , );U x t c x u x t=  therefore only Eqs. (1) and (2) will be 
analysed below. 

 
 

3. ASYMPTOTIC  AND  EXACT  SOLUTIONS 
 
First we sketch the basic steps of a commonly used method of mathematical 

physics for the determination and analysis of travelling wave solutions in weakly 
inhomogeneous media using Eq. (1). This method is based on the presentation of 
the solution of Eq. (1) in the following form 

 

( , ) ( )exp [ ( )],u x t A x i t xω= − Ψ                                    (4) 
 

where ( )A x  and ( )xΨ  are unknown real functions (being the wave amplitude 
and phase, respectively), and where ω  is the (angular) wave frequency, usually 
determined within the solution procedure of Eq. (1). After substituting ansatz (4) 
into Eq. (1), this complex equation is equivalent to two real equations: 
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where ( )k x  is the local wave number 
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Equation (5) can be integrated directly 
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2( ) ( ) const .k x A x =                                             (8) 
 

As a result, a second-order ordinary differential equation (6) for the unknown 
function ( )A x  is obtained. Generally, this equation is not simpler than Eq. (1). 
As the dependence of the solution of Eq. (1) on the properties of the medium is 
reflected in the coefficient 2 ( ),c x  further simplification of Eqs. (1) and (6) is 
possible if 2 ( )c x  exhibits certain favourable properties. 

In many cases of practical interest, 2 ( )c x  is a slowly varying function of the 
x coordinate. The potential for simplification of the problem by the use of slow 
changes of the coefficient 2 ( )c x  is exploited in various asymptotic approaches. 
In the WKB approximation that is often used in physics it is assumed that this 
coefficient can be presented as ( ) ( ),c x c xε≡  where 1.ε <<  From Eqs. (5)–(8) it 
follows that in this case ( )A x  and ( )k x  are also slowly varying functions of the 
x coordinate. A direct conjecture from this assumption is that the second term in 
Eq. (6) is of the order of 2ε  and can be neglected. Then Eq. (6) is purely 
algebraic and defines the local dispersion relation between the wave frequency 
and the local wave number: 

 

( ) .
( )

k x
c x

ω= ±                                                    (9) 

 

The different signs in Eq. (9) correspond to the respective directions of wave 
propagation along the x axis. The development of the relevant asymptotic 
procedure and the limits of applicability of the WKB approximation are 
described in detail in [12–15]. 

This method can also be used for finding exact solutions to Eq. (1). Basically, 
Eq. (6) can be solved numerically for arbitrary function ( ).c x  Although the 
solution ( )A x  will still depend on the integration constant in Eq. (8), it is easy to 
specify it for a numerical solution. Further, the corresponding solution of Eq. (1) 
can be found from expression (4) in a straightforward manner. The resulting 
solution (4) can be called a travelling wave in an arbitrarily inhomogeneous 
media [17,18]. In general, such solutions describe the complicated physical process 
of wave transformation in inhomogeneous media and optionally also wave–
medium or wave–wave interactions. 

Of specific interest are the cases of parameters of the medium, when Eq. (6) 
can be solved explicitly in elementary functions. This is possible, for example, if 
the wave amplitude is a linear function of the coordinate .x  Without the loss of 
generality, we can assume that in such cases 

 

( ) .A x x=                                                   (10) 
 

This assumption is equivalent to splitting of Eq. (6) into two equations, 
Eq. (9) and 
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In this case, Eqs. (8), (9) and (11) unambiguously define all the properties of the 
solution (4). It follows that solutions, satisfying Eqs. (10) and (11), exist only if 
the function ( )c x  has the form 

 

2( ) .c x x=                                                   (12) 
 

Then 
 

2
( ) , ( ) ,k x x

xx

ω ω= Ψ = −                                         (13) 

 

where signs of ( )k x  and ( )xΨ  correspond to the wave propagation to the right. 
This particular solution in its final form can be without the loss of generality 
presented as 

 

1
( , ) exp .u x t x i t

x
ω  = +  

  
                                     (14) 

 

As mentioned above, the exact set of conditions for the existence of such a 
solution, its physical meaning and interpretation as a travelling wave, as well as 
its potential applications have been described vaguely and partially ambiguously 
in classical studies [17,18]. The interpretation of the solution (14) is also 
complicated by the fact that it is defined on the semi-axis 0 ,x< < ∞  at the 
boundaries of which either the amplitude ( )A x  or the phase ( )xΨ  tend to 
infinity. 

Solution (14) can be interpreted as an elementary travelling wave in the 
medium considered. It is straightforward to demonstrate that any function 

 

1
( , ) ,u x t xU t

x
 = + 
 

                                          (15) 

 

where ( )U ζ  is an arbitrary function, found from initial or boundary conditions, 
is a particular solution to Eq. (1) provided 2( ) ,c x x=  and can be represented as a 
Fourier series of particular (elementary) solutions given by (14). The solution 
presented in Eq. (15) can be thus interpreted as a generalization of the 
(elementary) travelling waves (14). 

In a similar manner, travelling wave solutions of Eq. (2) can also be found. 
They exist, for example, when the function ( )c x  has the form: 

 

2 /3( ) ,c x x=                                                 (16) 
 

and can be presented in the general form 
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1/3
1/ 3

1
( , ) ( 3 ),u x t V t x

x
= −                                     (17) 

 

where ( )V ζ  is an arbitrary function. This solution is also defined on the semi-
axis 0 .x< < ∞  Its amplitude or phase also tends to infinity at the boundaries 

0x =  and .x = ∞  
Therefore, a family of exact travelling wave solutions of wave equation (1) or 

(2) for specific variations of the coefficients (12) and (16) can be found with the 
use of the underlying ideas stemming from the WKB approximation. This holds 
for certain types of inhomogeneous media. In what follows we shall analyse the 
conditions of their existence, and the properties of the corresponding waves. 

 
 

4. REDUCTION  TO  THE  WAVE  EQUATION 
WITH  CONSTANT  COEFFICIENTS 

 
It follows from the form of Eqs. (15) and (17) that the functions U  and V  are 

solutions of some wave equations with constant coefficients. Therefore a change 
of variables, reducing a wave equation with variable coefficients to a wave 
equation with constant coefficients, should exist. As above, we perform the 
analysis for Eq. (1); the generalization of the procedure to Eq. (2) is 
straightforward. 

The appearance of Eqs. (15) and (17) suggests that the general form of this 
change of variables is 

 

( , ) ( ) [ , ( )],u x t B x U t xτ=                                       (18) 
 

where one has to define the functions ( )B x  and ( ).xτ  After substituting Eq. (18) 
into Eq. (1), the resulting equation has constant coefficients if and only if the 
following conditions are satisfied: 
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In other words, Eqs. (19)–(21) uniquely define the class of inhomogeneous 
media, for which exact travelling wave solutions for Eq. (1) exist. Notice that if 
one chooses ,A B=  ( ) ~ ( ),x xτΨ  then Eqs. (8), (9) and (11) that are used in 
Section 3, are identically satisfied, provided Eqs. (19)–(21) hold. 
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Equations (19)–(21) can easily be solved. It is obvious that from 
( )B x ax b= +  (similarly for ( )c x  and ( ))xτ  the coefficient a  is redundant 

(since it only shows the non-normalized amplitude) and the coefficient b  defines 
the boundary of the semi-axis, on which the solution exists. Therefore the unique 
family of their solutions is 

 

2 1
( ) , ( ) , ( ) .c x x B x x x

x
τ= = = −                                (22) 

 

It is easy to show that the change of variables, represented by Eq. (18), where 
( )B x  and ( )xτ  are defined by Eqs. (22), reduces Eq. (1) to the generic wave 

equation with constant coefficients 
 

2 2

2 2
0.

U U

t τ
∂ ∂− =
∂ ∂

                                            (23) 

 

According to solutions given by Eqs. (14) and (15), Eq. (23) is determined on the 
semi-axis 0.x−∞ < <  

The above derivation demonstrates that the described reduction of Eq. (1) to 
the wave equation with constant coefficients with the use of ansatz (4) is possible 
if and only if functions defined in Eq. (22) coincide with functions in Eqs. (10) 
and (13). This is possible if and only if 2( ) .c x x=  Consequently, we have proved 
the uniqueness of the obtained family of exact travelling wave solutions in 
inhomogeneous media. Notice that the derivation does not rely on the property of 
weak inhomogeneity (understood as a slow dependence of the medium on the 
x coordinate) or on the assumption of slow variation of the amplitude or phase of 
the solution. 

An analogous procedure can be performed for Eq. (2). It is easy to 
demonstrate that a solution in the form of Eq. (17) converts Eq. (2) into Eq. (23) 
with constant coefficients if and only if 

 

2/3 1/3 1/3( ) , ( ) , ( ) 3 ,c x x A x x x xτ−= = =                        (24) 
 

whereas Eq. (23) again is determined on the semi-axis 0.x−∞ < <  
Thus the generic wave equation Eq. (1) with variable coefficients can be 

reduced to the wave equation with constant coefficients if and only if 2( ) .c x x=  
Similarly, wave equation (2) can be reduced to Eq. (23) if and only if 2/3( ) .c x x=  
The resulting Eq. (23), common for both cases, supports travelling wave 
solutions of fairly general shape propagating in opposite directions. Generally 
Eq. (23) should be solved on a semi-axis. A benefit from the procedure decribed 
above is that Eq. (23) has the same type everywhere, whereas Eqs. (1) and (2) 
change their type at the point 0x =  where they are not hyperbolic. 
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5. CAUCHY  PROBLEM  WITH  FINITE  LENGTH  INITIAL  
CONDITIONS 

 
To complete the formal description of travelling waves in the discussed cases, 

we analyse certain details of mathematical formulation of the correct boundary 
conditions at both points of singularity. Let us consider a generic Cauchy 
problem for an initial disturbance with a finite length for Eq. (1) with 2( ) .c x x=  
As a simplest example, we choose the following initial conditions for Eq. (23): 

 

1 1( , 0) 1( )1( ), ( , 0) 0,
U

U t l L t
t

τ τ τ τ− − ∂= = + − − = =
∂

               (25) 

 

where 1( )τ  is the Heaviside step function and L l>  defines the wave area, that 
is, the borders of the interval on the x axis where ( , 0) 0.U τ >  A solution of 
Eq. (1) for small values of time 1 ,t L<  when wave fronts are far from the points 
of singularity, represents a superposition of two trapezoidal impulses, propagat-
ing in opposite directions (Fig. 1). A particular solution of this kind is 

 

1 1 1 1 1 1 1 1( , ) [1( )1( ) 1( )1( )],
2

x
u x t x l t x L t x l t x L t− − − − − − − −= − + + − − + − + − − +   (26) 

 

The first additive in square brackets of Eq. (26) corresponds to a wave moving to 
the left towards the point 0x =  and the second to a wave moving to the right 
towards the infinity. 
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Fig. 1. Scheme of the solution ( )u x  of Eq. (1) for 1 .t L<  
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The position of the wave front of the left-going wave lx  moves towards the 
origin as 

 

,
1l

l
x

lt
=

+
                                               (27) 

 

and never reaches this point. Therefore there is no need to set a boundary 
condition at the point 0x =  as it does not take part in the formation of the wave 
field. The wave front of the right-going wave at rx  moves to the infinity as 

 

,
1r

L
x

Lt
=

−
                                                 (28) 

 

and reaches infinity by a finite time 1 .L  The amplitude of this wave front at this 
moment becomes infinite. Further wave propagation depends on the type of 
boundary conditions at the point of singularity. Notice that the singularity point 
x = ∞  in Eq. (1) corresponds to the origin 0x =  in Eq. (23). If boundary 
conditions at the point 0τ =  are set in the form of radiation conditions 

 

0,
U U

t τ
∂ ∂+ =
∂ ∂

                                             (29) 

 

then the right-going wave propagates completely out of the domain after the time 
moment 1 .t l=  After that, only the left-going impulse continues moving to the 
origin 0,x =  whereas its amplitude and duration gradually decrease. Physically, 
such boundary conditions simulate the breaking of a large-amplitude wave at the 
coast and its dissipation at the infinity. 

If one requires the wave amplitude to be bounded at the infinity, the wave is 
reflected back from the infinity with an opposite sign of the propagation 
direction. In this case, for large times 1t L>  the following function, correspond-
ing to the “anti-mirror reflection” of the originally right-going wave (Fig. 2) and 
appears in solution (26): 

 

1 1 1 1( , ) 1( )1( ).
2

x
u x t x l t x L t− − − −′ = − + − − − +                        (30) 

 

After 1 ,t l=  the right-going wave disappears and only two waves of different 
signs of elevation remain in the system. They both move towards the origin 

0,x =  but never reach this point. The wave field in this stage is described by the 
following expression: 

 

1 1 1 1 1 1 1 1( , ) [1( )1( ) 1( )1( )].
2

x
u x t x l t x L t x l t x L t− − − − − − − −= − + + − − − + − − − +   (31) 

 

The wave field, described by Eq. (2) with 2 /3( )c x x=  can be analysed in a 
similar way. Qualitatively, such a wave field will be similar to the described case 
with only the locations of the singularity points interchanged.  Some of the waves  
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Fig. 2. Scheme of the solution ( )u x  of Eq. (1) for 1t L>  supporting the wave reflection from 
infinity. 

 
 

move to the infinity, but never reach it, and their amplitudes gradually decrease. 
The waves propagating in the opposite direction reach the origin 0x =  by a finite 
time and their amplitudes increase. Although both Eqs. (1) and (2) can be 
transformed to the same wave equation (23) with constant coefficients, the 
described procedure cannot be used for relating the obtained travelling wave 
solutions of the original equations. The reason is that such solutions only exist for 
completely different types of the medium. This feature, however, does not 
exclude the possibility of relating these equations by means of reducing them to 
other wave equations with constant coefficients. 

 
 

6. CONCLUSIONS 
 
Two approaches of finding exact travelling wave solutions in a one-

dimensional wave equation with variable coefficients have been applied. The 
first approach uses the ideas of the WKB approximation and concentrates on the 
case when the asymptotic solution becomes exact. A change of variables, reduc-
ing a wave equation with variable coefficients to a wave equation with constant 
coefficients, is used in the second approach. These solutions and changes of 
variables exist only for a particular variation of the coefficients. 

The presented constructive proof completely solves both the existence and 
uniqueness problems of these solutions, equivalently, the problem of finding the 
complete set of travelling waves having a closed analytical form in a 
inhomogeneous one-dimensional medium. Some examples of solving of the 
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Cauchy problem in strongly inhomogeneous media are presented. Obtained 
travelling wave solutions can be applied in oceanography to study the wave 
transformation above complicated bottom relief, which can be presented as 
superposition of small sections, for which the wave celerity changes as 2( ) ~c x x  
or 4/ 3( ) ~ .c x x  
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Täpsed  lainelahendid  tugevalt  mittehomogeenses  keskkonnas 

 
Ira Didenkulova, Efim Pelinovsky ja Tarmo Soomere 

 
Ühemõõtmelise muutuvate kordajatega lineaarse lainevõrrandi ligikaudsed 

lainelahendid (lained mittehomogeenses keskkonnas) leitakse tavaliselt asümp-
tootiliste meetoditega, sageli WKB-meetodiga. Teatavatel juhtudel annab WKB-
meetod täpse lainelahendi. On näidatud, et taolised täpsed lainelahendid eksistee-
rivad piiratud mittehomogeensete keskkondade klassi puhul. On tõestatud taoliste 
täpsete lahendite eksisteerimine ja ühesus, konstrueeritud vastavate Cauchy üles-
annete lahendid ning analüüsitud üksiklainete levimist ja peegeldumist.  

 


