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Abstract. The objective of this paper is investigation of the optimization of manufacturing 
technology processes of large composite plastic products. One of the key problems is how to 
integrate computer-based product design and planning of the technological process. An 
optimization model is proposed to control and analyse the calculated technology planning route, 
optimal vacuum forming processes, the technology of post-forming operations (like trimming and 
drilling of slots and cut-outs) and strengthening and assembling operations. Finite element analysis 
and artificial neural networks are included in the model used in the study. A family of large 
composite plastic products together with the derivate products and their production technologies is 
designed using the proposed methodology. 
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1. INTRODUCTION 
 
Nowadays, advanced CAD/CAE/CAM tools are widely used in many 

companies to support engineering decision making processes. They allow 
integrated use of information about different aspects of the latter, such as geometry 
of the product, manufacturing processes, available resources, pricing, supplier data, 
etc. Computer simulations of the product and process performance are carried out. 
Undesirable conditions are modified and the simulation is performed again. The 
simulations permit to optimize the product and manufacturing processes. 

Progress in design optimization has continued steadily during the last forty 
years and by now a considerable number of optimization methods is available for 
engineers. In general, design optimization may be defined as the search for a set 
of inputs that minimizes (or maximizes) an objective function under given 
constraints. The objective function may be expressed as cost, product lead time, 
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product efficiency, return on investment, or any combination of the product 
performance parameters. It is subject to constraints in accordance with given 
relationships among variables and parameters and constraints on the manufactur-
ing system parameters and resources. This function may be represented by simple 
expressions or complex computer simulations. Challenges to design multiple 
products simultaneously have led to the collaborative multidisciplinary design 
optimization [1–5]. 

The aim of the current study is to develop general principles, applicable to the 
design of products and their manufacturing processes and to use the multi-
disciplinary design optimization approach for obtaining rapid and effective 
design decisions leading to better and more balanced solutions. The underlying 
focus of the proposed methodology is to develop formal procedures for exploit-
ing the synergistic effects of the coupling of different product development and 
technology planning decisions and existing experience in the design process. 

The simulations or observations of learning methods must be applied for 
evaluation of the relationship (response surface model) between design results 
and parameters with the best precision and the least cost. For practical design 
problems the hybrid learning methods, integrating the classification (or pattern 
recognition) and regression (or function approximation) paradigms, are 
recommended [3]. Neural networks and other methods of inductive learning are 
possible tools for extensions and generalizations of classical regression methods 
for this case. Artificial neural networks (ANN) are commonly used for learning 
and for generalization of the knowledge. For modelling the decisions in 
technology planning processes, the application of artificial feed-forward neural 
networks and the radial basis function networks are proposed [6,7]. 

 
 

2. PRODUCT  DESIGN 
 
It is recommended to split the product design process into two layers: the 

product family planning layer and the layer for optimization (for each fixed 
combination of functional features) of the design parameters of derivative 
products (product attributes optimization task). Under the introduction of these 
two layers, the product design is a hierarchical system of a mixed-integer 
programming model for the product family planning and a constrained non-linear 
programming model for the product attributes optimization tasks. 

The objective of the product family planning is to optimize sales volumes and 
the module combination pattern for each derivative product [8]. The conditions of 
effective use of resources and fulfillment of market demands must be satisfied. 
For optimal planning of the volumes of a product family and module combina-
tion, a model was developed. The model maximizes net profits and is subject to 
upper and lower bounds of market demand and capacity constraints. Figure 1 
shows examples of the derivative members of the product family of hydro-spa 
equipment. 
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Fig. 1. Examples of the derivative products. 

 
 
Using the optimization model, new additional functions of the market needs, 

required investments, possible market growth and production costs for each 
product are determined [8]. As a result, it is considerably easier to see the 
direction of investments and to determine profitable changes and modifications. 
Thus the delivery time and lead-time can be reduced. Based on the obtained 
results, the company Wellspa Inc. developed two additional functions of their 
product and the present sales justify the made decisions. 

In the product family modelling phase, general guidelines for structural 
calculations and optimization of the product are defined [8]. Later, in design of 
derivative products for the product family, non-linear optimization is used and a 
detailed description of the product is created. For modelling and structural 
analysis of derivative products CAE (ANSYS) and CAD (Unigraphics) systems 
are used. It is important to emphasize that the design of new products is tightly 
integrated with technological aspects. For example, the bathtub (an essential part 
of the hydro-spa system) is produced in two stages – in the first stage the shell is 
produced by vacuum forming, and in the second stage the shell is strengthened 
by adding a glass fiber epoxy layer on one side. In the vacuum forming process, 
the final shell thickness in different areas may differ significantly; this has to be 
taken into account in structural analysis of the product. The rate of thinning of 
the plastic sheet in forming operations can be determined from experience, 
special tests or simulations. When considering optimal thickness of the 
strengthening layer, obviously it should be different in different areas of the 
bathtub. In the current study, 12 areas of the bathtub were considered. Figure 2a 
shows the equivalent stress plot for the loaded model, which indicates the stress 
concentrators and is used to optimize the glass-fiber reinforcement thickness in 
different areas. In the current study, for design exploration and for the surrogate 
design model (to provide an estimate for the strengthening layer thickness–
structural response relationship), the neural network meta-modelling technique 
was used. The optimization is then performed using the surrogate design model. 
Finally, the FEA simulation with optimal thickness values is performed to verify 
the prediction accuracy of the surrogate model. Thus the time of optimization 
was shortened considerably. 
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(a) (b) 

 

Fig. 2. The equivalent stress plot (a) and the thickness distribution after optimization (b) of the 
composite structure. 

 
 
In optimization, the strengthening layer thickness was varied between 1 and 

5 mm. The constraints for maximum equivalent stress in each layer and the total 
deformation were also defined and the volume of added material was minimized. 
In Fig. 2b, the final thickness of the structure after optimization is shown. 

 
 

3. PLANNING  OF  THE  TECHNOLOGICAL  PROCESS 
 
Development of manufacturing (operation) plans for a product family is of great 

practical importance with many significant cost implications. The planning 
encompasses development of feasible manufacturing plans, evaluation of different 
feasible solutions and selection of the optimal plan(s). The technology planning 
model results in the optimal selection of technology operation sequences and 
parameters for the manufacturing of the product family. 

For finding out optimal technology route we have to cut the structure of the 
technology process into different segments. It means that we have to optimize 
different subsystems, like finding out the optimal vacuum forming technology, 
the technology for post-forming operations (trimming, drilling the slots and cut-
outs into the part, decoration, printing, etc.), strengthening (reinforcing) and 
assembling. An example of a generalized structure of the manufacturing plan for 
a product family is shown in Fig. 3 [9]. 

In Fig. 3, Op1,1 represents reverse draw forming with two heaters, Op1,2 – 
straight vacuum forming, Op2,1 – automatic trimming with saws, Op2,2 – 
automatic trimming with 5-axis NC routers, Op2,3 – manual trimming with saws, 
Op3,1 – manual reinforcement, Op3,2 – automatic reinforcement, Op4,1 – sub-
assembling, Op5,1 – assembling. 

Choosing among different design alternatives of operations involves detailed 
analysis of existing knowledge and experience. A key factor in the selection 
process is representation of the knowledge in such a way that operation selection 
and design becomes a computer-supported process. 
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Fig. 3. The structure of the technology process. 
 
 
An artificial neural network is used for modelling the decisions of technology 

planning processes for each operation. ANN copes well with incomplete data and 
imprecise inputs. A non-linear input–output mapping is used for modelling. 
Neural networks are composed of nodes (neurons) connected by directed links. 
Each link has a numerical weight ,jiW  associated with it. A mathematical model 
for a neuron can be represented as 
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where ja  is the output activation of the unit j  and g  is the activation function 
of the unit (sigmoid and linear functions are used as activation functions). 

The “classical” measure of the network performance (error) is the sum of 
squared errors. Different ANN training algorithms were investigated: a multi-
layer feed-forward network with one hidden layer, the sigmoid function (for the 
hidden layer) and linear activation functions (for the output layer). Back-pro-
pagation and the Levenberg–Marquart approximation algorithms were selected as 
most suitable. Application of the artificial feed-forward neural networks and 
Radial Basis Function Network has been proposed in [6,7]. An attempt is made to 
tackle the problem in a practical and integrative way. 

The first process in the technology route is vacuum forming. Vacuum forming 
(thermoforming) uses heat, vacuum, or pressure to form the plastic sheet material 
into a shape that is determined by the mould (Fig. 4). Sheet stock is heated to a 
temperature at which the plastic softens (but below its melting point). Using 
vacuum or pressure, the plastic is then stretched to duplicate the contours of the 
mould. Next, the plastic is cooled, by what it retains its shape. Finally, it is 
removed from the mould and trimmed as required to create the final product. 
Thermoforming is suitable for low to moderate production volumes (up to 
approximately 100 000 units per year) because, for example, tooling for injection 
molding can cost ten times as much. 

In the vacuum forming process, the knowledge and the experience of 
engineers is of great importance. Geometrical complexity, depth of draw, level of  
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Fig. 4. Straight vacuum forming and forming steps [10]. 
 
 

the surface details required, ribbing, fillets, stress concentration, shrinkage, 
expansion, and undercuts are all factors that must be carefully considered when 
designing the components and vacuum forming operations. An example of 
typical components of vacuum forming is given in Fig. 5 (geometric complexity). 

 
 

Simple parts: code 1 
 

 
 

 

 
Parts with medium complexity: code 2 

 

  
 

 
Complex parts: code 3 

 

  
 

 

Fig. 5. Typical vacuum forming parts. 
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The quality of formed parts is seriously affected by the moisture absorbing 
ability of the material. The materials known as hygroscopic, if not pre-dried prior 
to forming, could have moisture blisters which will pit the surface of the sheet, 
resulting in a rejection of the part. For instance, ABS is able to absorb up to 0.3% 
moisture in 24 hours. In Fig. 6 some samples of wet material sheets after forming 
are shown. To overcome this problem it is sometimes necessary for hygroscopic 
materials to be pre-dried in an oven before forming. The drying temperature and 
duration of the drying time depends on the material and the thickness [10,11]. 

Successful design of the thermoforming operation can best be accomplished 
by controlling the critical parameters, associated with the process. These para-
meters include sheet properties, heating conditions and parameters of the forming 
operations.  

The moulds are one of the most important elements of the forming process. 
One of the main advantages of vacuum forming is the significantly lower 
pressures as compared, for example, to the injection molding process. As a result, 
the vacuum formed tools can be produced economically from a wide range of 
materials to suit different prototype and production requirements. The prime 
function of a mould is to permit the machine operator to produce the necessary 
quantity of duplicate parts before degradation. 

Selection of the best-suited mould material depends largely on the severity 
and length of the service required. If only a few parts are required, fairly low 
temperature plastics, wood or plaster can be used. However, if the quantity 
requirements and material temperatures are higher then ideally an aluminium-
based resin or aluminium mould would be recommended. 

For vacuum forming, it is necessary to take into account significant thinning 
of the sheet during the process. This thinning is a natural consequence of the 
deformations. For vacuum forming, elastic strains are negligible; therefore, the 
volume can be assumed to be constant. The thickness variations may be large 
(Fig. 7). Therefore, it is often important to control the thickness variations in 
order to meet functional requirements of the part. 

 
 

  
(a) (b) 

 

Fig. 6. Surface defects when the material was wet before molding: (a) Polycarbonate; (b) ABS. 
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Fig. 7. Thickness variation of a 3.2 mm thick FF0013 Plexiglas plate after vacuum forming. 
 
 
The designer can accommodate variations in the thickness if he knows in 

advance what they may be. We have analysed the thinning process with different 
materials like ABS, PMMA, white 2000BM 1516, polycarbonate ICE (UV) and 
acrylic FF0013 Plexiglas. In the study we mainly concentrate on the acrylic 
FF0013 Plexiglas, which is formed at the temperature 320–340 °C (heating time 
was 6 min and cooling time 2 min). The experimental product and wall thickness 
reduction is shown in Fig. 7. 

The methods used to control thinning are the following: 
� selection of the forming scheme; 
� use of surface lubrication; 
� modification of the die or part design to minimize local stress concentrations; 
� post-forming strengthening (reinforcing), etc. 

For analysing the suitable vacuum forming process, the heating zone variations 
should be also calculated. The temperature and working time for each heating zone 
depends on the part, material structure, geometry and parameters. For experimental 
analysis, the product with four independent zones and with controlled temperature 
was used, the temperature variation was 290–340 °C (Fig. 8). 
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Fig. 8. Heater zones and temperature differences. 
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To optimize different subsystems, the selection parameters for each technology 
have to be determined. Table 1 shows a short list of the parameters for vacuum 
forming processes. Those parameters were used also in the ANN training. 

Using the selection parameters, the ANN was trained for each technology like 
vacuum forming processes, acrylic cutting technologies and reinforcement 
(Table 2). 

In Table 2 the meaning of the acronyms is as follows: Geom  – geometric 
complexity, ( )Log nP  – the number of parts, Dim  – the dimension of the 
vacuum forming bench table, Thick  – maximal material thickness, SQ  – surface 
quality, PT  – part texture, UC  – undercuts, I  – investments. There are three 
grades: 0 – not usable, 1 – reverse draw forming with two heaters, 2 – straight 
vacuum forming. 

Thermoformed parts are trimmed in several ways: with matched shearing 
dies, steel rule cutting dies, saws, routers, hand knives, and 3- and 5-axis NC 
routers. The type of equipment best suited depends largely on the type of the cut, 
size of the part, drawing ratio, thickness of the material and the production 
quantity required. They are also factors to consider when determining the cost of 
such equipment. Below some of the more popular methods adopted are 
described. 

 
 

Table 1. Selection parameters for vacuum forming processes 
 

Parameter and mark Description 

Dimensions (L × B) 280 × 430, 680 × 760 up to 2000 × 1000 mm 
Max depth of draw (H) 183, 220, 300 up to 800 mm 
Max material thickness (D) 3.2, 4, 6, 7 mm 
Undercuts (UC) yes/no 
… … 
Draft angle (α)  α 5> °  
Surface quality (Q) low, medium, high 
Batch size (N) 1 N 10 000≤ ≤  (0 log N 4)≤ ≤  
… … 
Wall thickness after forming (h) 0.7 h 3< <  mm 
Heating temperature (T) 180 T 220 C≤ ≤ °  
Cooling time (C) 3 C 7< <  min 
Heating zones (Z) 1 Z 4< <  
Cooling points (P) 2 P 5≤ ≤  

 
 

Table 2. Vacuum forming training mode 
 

Sample 
Vacuum 
forming 

Geom  ( )Log nP  Dim  Thick  SQ  PT  UC  I  

  1 1 1 2 1 0 2 1 2 2 
  2 2 2 2 2 1 2 2 2 1 
… … … … … … … … … … 
20 2 1 2 2 1 2 1 2 1 
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The trimming task has two possibilities {yes = 1, no = 0}; if the trimming 
output is 1, manual or automatic trimming can be used. In case of the automatic 
trimming process, saws or 5-axis NC routers can be used. For finding out the 
optimal trimming method, different processes have to be analysed and possible 
defects determined. The analysis resulted in optimal input parameters for the 
neural network tasks. 

Reinforcement tasks have two options: {yes, no}; in case of “yes” the manual 
or automatic reinforcement can be used. In order to obtain sufficient training data 
for the neural networks, used for optimization tasks later, a series of finite 
element analysis to simulate and optimize the reinforcement ply thickness, were 
performed. 

The optimization task can be formulated as follows: find the feasible opera-
tion sequences for a product family that gives maximum profit and minimizes the 
manufacturing time, and is subject to the following constraints: 1) capacity 
constraints for all workstations, 2) use of materials, 3) use of technologies. 

The result of the technology planning optimization gives the list of operations 
used to manufacture the proposed production family together with the data about 
the used resources. 

Applying the above mentioned methodology, it is possible to find the optimal 
set of technologies, to maximize the profits and to minimize the production time 
and costs. Testing of the proposed approach has shown that this approach 
determines a set of optimal process parameters for vacuum forming and post-
forming operations quickly. As a result, parts of needed quality can be produced 
without relaying on the experience of the personnel. 

 
 

4. CONCLUSIONS 
 
The objective of this study was to investigate how to optimize the manu-

facturing process of large composite plastic parts. The computer-based product 
design has been integrated with the process planning. For optimal selection of the 
technology, an optimization model has been proposed. The optimization model 
has been created to control and analyse the calculated technology planning route, 
the optimal vacuum forming process and post-forming, strengthening (reinforc-
ing) and assembling operations. 

The design of new products is tightly integrated with manufacturing aspects. 
In the current study, for design assessment, the artificial neural network meta-
modelling technique has been used. Optimization of a plastic sheet and its 
strengthening layer thickness has been performed using the surrogate design 
model. The final FEA simulation was performed with optimal thickness values to 
verify the predicted accuracy of the surrogate model. In this manner the 
optimization time was considerably shortened. 

Most of the above described methods are now under development and 
industrial testing. To facilitate these developments, it is important to provide 
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effective techniques and computer tools to integrate an increasing number of 
disciplines into the design system, in which the human ingenuity is combined 
with the power of computers in making design decisions. 

The proposed approach has been applied for the development of a family of 
products in Wellspa Inc. Described examples illustrate the validity and effective-
ness of the proposed method. 
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Suuregabariidiliste  plastdetailide  tootmistehnoloogia  
planeerimine 

 
Rein Küttner, Kristo Karjust ja Meelis Pohlak 

 
On käsitletud suuregabariidiliste plastdetailide tootmistehnoloogia optimaalse 

planeerimise metoodikat. On püütud koos projekteerida tootepere, derivaattooted 
ja nende valmistamise tehnoloogiad. Samas on optimeeritud erinevaid alam-
süsteeme, nagu vaakumvormimise ning lõikamise tehnoloogiad ja tugevdamise 
ning koostamise operatsioonid. Iga üksiku alamtehnoloogia protsessi planeeri-
missüsteemi modelleerimiseks on kasutatud närvivõrke; metoodika realiseeri-
miseks on kasutatud MS Exceli ja MatLAB’i keskkonda. Näitena on vaadeldud 
suuregabariidiliste plastdetailide tootmistehnoloogiat ettevõttes Wellspa OÜ. 

 


