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Abstract. The inverse problem of decomposing uncontrolled water flow to the unregistered 
consumption and the leakage in mains and water distribution networks is considered. A 
mathematical model is proposed for the determination of unregistered consumption and leakage 
using the heads and flows at the inlet and at the outlet of the main or at some nodes of the network. 
The cases of discretely and continuously distributed water consumption in mains are thoroughly 
analysed and equations for the determination of respective parameters derived. 
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1. INTRODUCTION 
 
Water distribution systems are commonly examined using mathematical 

models, which describe their hydraulic qualities. To represents the physical 
system correctly, the network model must be calibrated. As the first step in the 
calibration procedure, uncontrolled flows in the network must be studied. The 
uncontrolled flows are due to leaks, illegal connections, meter errors, etc. 
Usually available data for the estimation of volumes and spatial and time 
distribution of uncontrolled flows is insufficient. Therefore the correction 
parameters of the mathematical model can not be obtained directly. Usually for 
the determination of model parameters the measured pressure and flow data are 
used. 
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Recently some methods have been proposed for the evaluation of the 
distribution of leaks in water distribution networks. It has been recommended to 
simulate the leaks with a fictitious discharge valve and to determine the number 
of defects by statistical criteria and available recorded data [1]. Based on an 
empirical expression, a formula, which relates the leakage flow to pressure with 
the power of 1.18 is proposed in [2]. A formula for water losses, which in addi-
tion to pressure consider leak’s surface, is given in [3]. An algorithm, which 
distributes leakage between the nodes proportionally to the pressure in the nodes, 
is proposed in [4]. In this model, an iteration process, which determines the 
leakage and pressure intermittently, was applied. In [5], a simulation model is 
proposed in which leaks are allocated at nodes and the related flows depend on 
the pressure with the power of 0.5 for the burst and of 1.5 for the background 
leakage. An intensively metered study of leakage and demand on the district 
meter area is described in [6]. Statistical analysis is used for decomposing the 
flows into constituent components of domestic, commercial and pressure-related 
leakage. In [7] the problem of adequate representation of real demand and losses 
and their dependence on water pressure is considered. 

Recently leak detection methodologies have been worked out, which are 
based on transient analysis. To estimate leak location and size, the data from 
transient tests are analysed either in the time domain or in the frequency domain. 
Within the first approach, the real time values of pressure and flow at the pipe 
end [8,9] or only the pressure–time history in one section are used [10]. Within the 
second approach, the analysis of the Fourier transform of the pressure signal is 
used and compared with the experimental transfer function [11–13]. 

The pattern, which the presence of a leak imposes on the resonance peaks of 
the frequency response diagram, has also been considered [14]. In [15], a fuzzy 
system is used for detecting leaks in the cases when operational or process 
transients are generated in the system, which incorporate the uncertainty aspect. 
The Lyapunov stability criteria is used for leak detection in a continuously 
monitored pipeline in [16]. 

The uncontrolled flow can be divided into two parts: the unregistered 
consumption, which consists mainly of illegal connections and water meter 
errors, and leakage. It can be assumed that the flow of the first part is distributed 
similarly to registered consumption. This permits to decompose the given flow 
into two parts: consumption, in which distribution is known, and leakage, in 
which distribution depends on the pressure. In [17] a methodology for the evalua-
tion of water losses in a water distribution network is given. This methodology 
disregards the existence of the two components of uncontrolled water: physical 
losses in mains and the volume of water, consumed but not measured by meters. 

In this paper we consider the problem of decomposing the flow between the 
consumption and leakage. An inverse parametric problem for the determination 
of the decomposition of uncontrolled flows in mains and water distribution 
networks is formulated and solved. 
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2. MAINS  WITH  DISCRETELY  DISTRIBUTED   
WATER  CONSUMPTION 

 
Let us analyse the leakage in a main with a simple mathematical model. 

Consider a main with discretely distributed registered water consumptions ,iQ  
unregistered consumptions *,iQ  and leakages iQ�  at points ix  ( 1, 2, , )i n= …  
(Fig. 1). 

Denote by 0Q  and LQ  the volumes of the flow at the inlet and at the outlet  
of the main. Assume that * ( 1)i iQ m Q= −  so that 

 

* .i i iQ Q mQ+ =                                             (1) 
 

Here 1 m  is the registration coefficient of consumption. Assume that 1.m >  
Denote by ( )H x  the total head and by ( )q x  the flow in the main at the point 

.x  Let 0 (0),H H=  ( )i iH H x=  and ( ).LH H L=  Let the head loss in the 
interval 1[ , ]i ix x +  be 

 

,i i ih cl qα=                                                   (2) 
 

where c  is the resistance coefficient, 1 ,i i il x x+= −  iq  is the flow in the interval 

1[ , ]i ix x+  and α  is the flow exponent. 
Since 

 

0 0 ,q Q=  
 

0
1

( ), 1, 2, , ,
i

i k k
k

q Q mQ Q i n
=

= − + =∑ � …   

 

n nq Q=                                                     (3) 
 

we have 
 

1 0 0 0 ,H H cl Qα= −  
 

1 0
1

( ) , 1, 2, ..., ,
i

i i i k k
k

H H cl Q mQ Q i n
α

+
=

 
= + − + = 

 
∑ �    

 

1 .n LH H+ =                                                   (4) 
 
 

 
 

Fig. 1. Main with discretely distributed water consumption. 
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Assume that the local leakages at the points ix  can be expressed as 
 

, 1, 2, ..., ,i iQ kH i nβ= =�                                      (5) 
 

where k  is a coefficient, which characterizes the leakage intensity and β  is the 
loss exponent. 

Let us now consider the following inverse problem for flows in the main. 
Assume that the flows 0 ,Q  ,iQ  LQ  and heads 0H  and LH  are given. From these 
data the leakages iQ�  and unregistered consumptions *

iQ  are to be found. For this 
the coefficients m  and ,k  and heads iH  must be determined. After that *

iQ  and 

iQ�  can be obtained from Eqs. (1) and (5). 
For the determination of 2n +  unknowns ,iH  m  and k  we can use the 

following equations. The mass conservation law gives 
 

0
1

( ) .
n

i i L
i

mQ kH Q Qβ

=
+ = −∑                                   (6) 

 

From Eq. (3), for energy conservation we have 
 

1 0 0 0 ,H H cl Qα= −  

1 0
1

( ) , 1, 2, ..., ,
i

i i i s s
s

H H cl Q mQ kH i n
α

β
+

=

 
= − − + = 

 
∑   

1 .n LH H+ =                                                    (7) 
 

By elimination of the heads ,iH  the system (6), (7) can be reduced to two 
equations for the determination of m  and .k  

Now, let us consider a simple special case when Eqs. (5) and (6) can be easily 
solved. Assume that 2α =  and 1.β =  Then for 2n =  from Eqs. (6) and (7) we 
obtain 

 

1 2 1 2 0

2
1 0 0 0

2
2 1 1 0 1 1

2
2 2 0 1 1 2 2

( ) ( ) ,

,

[ ] ,

[ ] .

L

L

m Q Q k H H Q Q

H H cl Q

H H cl Q mQ kH

H H cl Q mQ kH mQ kH

+ + + = −

= −

= − − −

= − − − − −

                    

(8)

 

 

The solution of this system can be expressed as 
 

2 0 1 2

1 2 2 1

1 2 0

1 2 2 1

( ) ( )
,

( ) ( )
,L

H Q R H R Q
m

Q H Q H

Q R Q Q Q R
k

Q H Q H

− − −
=

−
− − −

=
−

                                  
(9)

 

 

where 
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2
1 0 0 0

2
2 2

,

,L L

H H cl Q

H H cl Q

= −

= +
                                          

(10)
 

 

and 
 

1 2

1

.
H H

R
cl

−=                                               (11) 

 

For the cases 2,n >  system of equations (6), (7) reduces to the solution of an 
algebraic system of equations, which contains unknown parameters m  and k  in 
the power of 2( 1).n −  

 
 

3. MAINS  WITH  CONTINUOUSLY  DISTRIBUTED  WATER  
CONSUMPTION 

 
Consider now a main with continuously distributed registered consumption 

( ),Q x  unregistered consumption *( ),Q x  leakage ( )Q x�  and head ( )H x  (Fig. 2). 
Denote by ( )h x  the head loss due to the pipe friction in the interval (0, )x  of 

the pipe, by 0H  and 0Q  the head and flow at the entrance of the pipe, and   
by  LH   and  LQ  the head and flow at the outlet of the pipe. Assume that 

*( ) ( 1) ( ),Q x m Q x= −  i.e. 
 

*( ) ( ) ( ).Q x Q x mQ x+ =                                        (12) 
 

The head and the flow in the pipe at the point x  are 
 

0( ) ( ),H x H h x= −                                           (13) 
 

0
0

( ) [ ( ) ( )]d .
x

q x Q mQ x Q x x= − +∫ �                               (14) 

 
 
 

 
 

Fig. 2. Main with continuously distributed water consumption. 
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The head loss can be expressed as 
 

0

( ) [ ( )] d ,
x

h x c q x xα= ∫                                          (15) 

 

or 
 

0
0 0

( ) [ ( ) ( )]d d ,
x x

h x c Q mQ x Q x x x

α
  = − + 
  
∫ ∫ �                         (16) 

 

where c  is the resistance coefficient and α  is the flow exponent. 
Assume that 

 

( ) [ ( )] ,Q x k H x β=�                                           (17) 
 
where k  is the leakage intensity coefficient and β  is the loss exponent. 

From Eqs. (13)–(17) follows 
 

0 0
0 0

( ) { ( ) [ ( )] }d d .
x x

H x H c Q mQ x k H x x x

α
β= − − +∫ ∫                    (18) 

 

With differentiation of Eq. (18) we obtain 
 

0
0

d
{ ( ) [ ( )] }d ,

d

xH
c Q mQ x k H x x

x

α
β= − − +∫                    (19) 

 

and 
 

1
2

02
0

d
{ ( ) [ ( )] }d { ( ) [ ( )] }.

d

xH
c Q mQ x k H x x mQ x k H x

x

α
β βα

−

= − + ⋅ +∫      (20) 

 
Substituting Eq. (19) into (20), we have 

 
1

2

2

d d
{ ( ) [ ( )] } 0.

dd

H H
c mQ x k H x

xx

α
α βα

−

 
− − + = 

 
                  (21) 

 
The boundary conditions for Eq. (21) follow from Eqs. (18) and (19) as 
 

0 0

0

d
(0) , .

d
x

H
H H cQ

x
α

=

= = −                              (22) 
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From Eqs. (21) and (22) the head is determined in the form of ( ; , ).H x m k  
Now the inverse problem for the determination of the coefficients m  and k  can 
be solved. For that the equations 

 

( ; , ) ,LH L m k H=                                            (23) 
 

0
0

{ ( ) [ ( ; , )] }d ,
L

LmQ x k H x m k x Q Qβ+ = −∫                          (24) 

 

can be used.  
Since the solution of the non-linear differential equation (21) in the general 

case cannot be expressed through analytic functions, we shall further consider 
some simplified versions of this equation. 

 
 

4. MAINS  WITH  CONSTANT  CONSUMPTION 
 
Let us consider a special case of continuously distributed consumption when 

2,α =  1β =  and ( ) 1,Q x ≅  *( ) 1.Q x m= −  
For this case Eq. (21) has the following form 

 
2

2

d d
2 ( ) 0.

dd

H H m
c k H x

x kx

 + − + = 
 

                              (25) 

 

Taking  
 

d
( ), , [ ( )],

d

H
x x H p p p x H

x
= = =                          (26) 

 

we have 
 

2

2

d d
( ).

dd

H p
p H

Hx
=                                          (27) 

 
Respectively Eq. (25) can be written as 
 

d
( ) 2 ( ) 0.

d

p m
p H c k p H H

H k
 + − + = 
 

                     (28) 

 
The solution of Eq. (28) with the boundary condition 

 
2

0 0( )p H cQ= −                                               (29) 
 

has the form 
 



 10

2/3
2

1

1 3
3 ,

2 2
p c mH kH c

  = − + +  
  

                         (30) 

 

where 
 

2 3/ 2 2
1 0 0 0

2 1
( ) 2 .

3 2
c cQ c mH kH

 = − + 
 

                        (31) 

 

Therefore 
 

2 /3
2

1

d 1 3
3 .

d 2 2

H
c mH kH c

x

  = − + +  
  

                      (32) 

 
The solution of Eq. (32) with the boundary condition (22) can be written as 
 

2 ( )
( ) ,

1 ( )

R S x m
H x

S x k
= −

−
                                        (33) 

 

where 
 

2
2 1

2
,

2

c m
R

kc k
= −                                            (34) 

 

and 
 

3
0

2

2
2

0

3
( ) .

2

m
H

kS x ck R x
m

H R
k

−  
= −  

  + + 
 

                     (35) 

 
Now, to solve the inverse problem and to determine the coefficients m  and 

,k  Eqs. (23), (24) and (33) must be used. From these equations we obtain 
 

2 ( )
,

1 ( ) L

R S L m
H

S L k
− =

−
                                       (36) 

 

and 
 

2

0
0

( )
d .

1 ( )

L

L

R S x
k x Q Q mL

S x
= − −

−∫                               (37) 
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5. MAINS  WITH  SMALL  LEAKAGE 
 
Consider now the leakage problem for a special case when the leakage is 

relatively small. Let 2,α =  1β =  and assume that 1.k �  If we consider the 
constant k  as a small parameter, then we can solve the problem (21) and (22) 
with the perturbation method. 

Take 
 

(0) (1) 2 (2)( ) ( ) ( ) ( ) ...H x H x kH x k H x= + + + .                   (38) 
 
Substituting Eq. (38) into Eqs. (21) and (22), we obtain 
 

2 (0) (0)

2

d d
2 ( ) 0,

dd

H H
c mQ x

xx
− − =                             (39) 

 
2 (1) (1) (0)

(0)
2 (0)

d 1 d d
( ) 2 0,

d dd d
d

H H H
c mQ x c H

x xx H

x

− − − =

−

       (40) 

........................................................... 
 
and the following boundary conditions: 
 

(0)
(0) 2

0 0

0

d
(0) , ,

d
x

H
H H cQ

x
=

= = −                             (41) 

 

(1)
(1)

0

d
(0) 0, 0,

d
x

H
H

x
=

= =                                    (42) 

........................................................... 
 

The solution of Eq. (39) with the boundary conditions (41) can be written as 
 

(0) 2
0

0

( ) [ ( )] d ,
x

H x H q x x= − ∫                                      (43) 

 

where 
 

0
0

( ) ( )d .
x

q x Q m Q x x= − ∫                                         (44) 

 

Now Eq. (40) takes the form 
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2 (1) (1)

2

d
d dd

( ) 0,
( ) dd

q
H Hx

K x
q x xx

+ − =                               (45) 

 

where 
 

2
0

0

( ) 2 ( ) [ ( )] d .
x

K x cq x H c q x x
 

= − 
  

∫                            (46) 

 

Solution of Eqs. (42) and (45) can be written as 
 

(1)

0 0

1
( ) ( ) ( )d .

( )

x x

H x q x K x x
q x

= ∫ ∫                               (47) 

 

Thus in the first approximation we have 
 

2
0

0 0

1
( ) [ ( )] d ( )d ,

( )

x x

H x H q x x k K x x
q x

= − +∫ ∫                       (48) 

 

and for the determination of the leakage we have the formula 
 

2
0

0 0

1
( ) [ ( )] d ( )d .

( )

x x

Q x k H q x x k K x x
q x

 
= − + 

  
∫ ∫�                   (49) 

 

Now, using Eqs. (48) and (49), the inverse problem for the determination of 
the coefficients m  and k  can be solved. For that the following equations must 
be used: 

 

( ) ,LH L H=                                                (50) 
 

0
0

[ ( ) ( )]d .
L

LmQ x Q x x Q Q+ = −∫ �                                  (51) 

 

Thus if the water consumption ( )Q x  and the constants 0 ,Q  ,LQ  0H  and LH  
are known, the leakage and unregistered water consumption can be determined. 

 
 

6. WATER  DISTRIBUTION  NETWORK 
 
Consider now the same problem for a water distribution network. Let the 

network have p  pipes, l  loops, one fixed head node (inlet) and n  unknown 
head nodes (outlets). For such a network the following identity holds 

 

.p n l= +                                                   (52) 
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Assume that the topology of the network is given by the following incidence 
matrices. 

The unknown head nodes incidence ( )p n×  matrix is 
 

[ ],ijA a=                                                     (53) 
 

where 
 

1, if the flow of pipe enters node ,

0, if pipe  is not connected with node ,

1, if the flow of pipe  leaves node .
ij

i j

a i j

 i j


= 
−

 

 
The fixed head node incidence ( )p l×  matrix is 

 

[ ],iB b=                                                  (54) 
 

where 
 

1, if the flow of pipe  comes from the fixed head node,

0, if pipe  is not connected with the fixed head node.i

 i
b

i


= 


 

 
The unknown nodal heads are defined by (1 )n×  vector 
 

1 2[ , , , ].T
nH H H H= …                                         (55) 

 

Let the assigned nodal demands be given by the (1 )n×  vector 
 

1 2[ , , , ]T
nQ Q Q Q= …                                           (56) 

 

and the leakages by the (1 )n×  vector 
 

1 2[ , , , ].T
nQ Q Q Q=� � � �…                                          (57) 

 

We assume that 
 

.Q mQ kH= +�                                               (58) 
 

The unknown pipe flows are defined by the (1 )p×  vector 
 

1 2[ , , , ].T
pq q q q= …                                         (59) 

 

The head loss (1 )p×  vector can be expressed as  
 

,h Dq=                                                  (60) 
 

where D  is the hydraulic impedance matrix in the form 
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1
1 1

1
2 2

1

.
...

p p

c q

c q
D

c q

α

α

α

−

−

−

 
 
 

=  
 
 
  

                      (61) 

 

The unknown head and flow vector components iH  and ,kq  and coefficients 
m  and k  are determined from the following energy and mass conservation laws: 

 

0 ,AH Dq BH+ = −                                           (62) 
 

,TA q mQ kH= +                                             (63) 
 

0 ,TBq Q− =                                                  (64) 
 

and complementary equations 
 

0
1 1

,
n n

i i
i i

Q m Q k H
= =

= +∑ ∑                                        (65) 

 

( , ) .s LH m k H=                                               (66) 
 

Here LH  is assigned head in some nodes of the network and 0H  and 0Q  denote 
the assigned nodal head and flow at the inlet node. Solution of the system (62)–
(66) can be obtained with software packages for the modelling of water 
distribution networks (for example EPANET) using iterative technique. 

 
 

7. CONCLUSIONS 
 
A mathematical model for the determination of the leakage and unregistered 

water consumption in mains and in water distribution networks is proposed. It is 
assumed that the water consumption distribution is known and the heads and 
flows at the inlet and at the outlet of the main or at some nodes of the network 
are given. The cases of discretely and continuously distributed consumption are 
analysed and equations for the determination of respective parameters derived. 
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Peatorustiku  ja  veevõrgu  lekete  määramise  
matemaatiline  mudel 

 
Tiit Koppel, Leo Ainola ja Raido Puust 

 
On loodud matemaatiline mudel, mis võimaldab määrata registreerimata 

tarbimised ja lekked, lähtudes survest ning vooluhulgast kas peatoru alguses ja 
lõpus või veevõrgu sõlmpunktides. Põhjalikult on analüüsitud nii diskreetse kui 
ka pideva jaotusega veetarbimise juhtu ja esitatud võrrandid veevõrgu para-
meetrite määramiseks. 

 


