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Abstract. Urban areas are characterized by a pattern of very heterogeneous patches resulting from 
the co-occurrence of different materials within the ground instantaneous field of view of a moderate 
resolution scanner, e.g. Landsat Thematic Mapper (TM). The main objective of this study was to 
map vegetation, impervious surface, and soil from Landsat TM images acquired over the town of 
Tartu (Estonia) on three different dates (in 1988, 1995, and 2001). The linear spectral unmixing 
method was utilized for endmember fraction estimation. Accuracy assessment was conducted on the 
1995 fraction images using the Estonian basic map at 1 : 10 000 scale. The overall fraction estimation 
error was 9% (by classes: vegetation and soil 6%, impervious surface 15%). 
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INTRODUCTION 
 
The proportion of people of the total world population living in urban areas 

has risen to 50% from approximately 10% in 1900. This increase is estimated to 
proceed further and to reach 60% by 2030 (O�Meara Sheehan, 2002). Urban areas 
themselves are considered to cover approximately 1% of the total land area but 
these areas are in a stage of considerable growth as more agricultural land around 
urban areas is suburbanized (Carlson & Traci Arthur, 2000). O�Meara Sheehan 
(2002) pointed out that in many cases where the urban population has remained 
stable (or even declined) cities themselves have grown in size. This growth is to  
a large extent taking place at the expense of agricultural lands around cities 
(so-called greenfield development) as it proves to be more cost-efficient than 
brownfield development, i.e. utilizing lands that have already been used for 
manufacturing, housing, etc. In other words, real estate development outweighs 
agriculture in the case of free market economy (Tammaru, 2000). 
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The main aim of this study was to conduct a normalized spectral unmixing of 
Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus 
(ETM+) images acquired over Tartu, Estonia, and to estimate the fractions of 
vegetation, impervious surfaces, and soil (VIS) in the study area in 1988, 1995, 
and 2001. Secondly, the unmixed fraction images were compared to the Estonian 
basic map at 1 : 10 000 scale for the purpose of accuracy assessment. Thirdly, a 
closer inspection of the effects of landcover changes on the VIS model fractions 
in a suburban area of Ihaste, which has undergone considerable development 
during the period under question (from Soviet-era temporary summerhouse area 
with backyard fields to permanent house suburbia where inhabitants live all year 
round), will be presented as a case study of using the unmixed fraction images for 
detecting urban landcover changes in the VIS model framework. 

 
 

Urban  remote  sensing 
 
Past years have seen an increased use of Landsat images in urban remote 

sensing. Small (2001) used Landsat TM images to estimate vegetation abundance 
in New York City and monitor changes over one year (Small, 2002) by using 
linear spectral unmixing and pseudoinvariant endmembers. Gillies et al. (2003) 
established a change in the impervious cover in the Greek Line watershed near 
Atlanta (USA) from Landsat TM and Landsat Multispectral Scanner System 
(MSS) imagery between 1979 and 1997 and used the change in impervious area 
as an ecological indicator for assessing the population dynamics of river mussels. 

Clapham (2003) pointed out that in the case of classification of urban land-
cover using satellite imagery, continua of different classes should be considered 
instead of creating categorical clusters of landcover types. Ridd (1995) proposed 
the vegetation�impervious surface�soil (VIS) model by which a certain area (e.g. 
an image pixel) in an urban environment can be described through proportions of 
vegetation, impervious surface, and soil. Ridd (1995) himself used the VIS model 
to describe the urban morphology of Salt Lake City�s (USA) metropolitan area 
from the Satellite Probatoire pour l�Observation de la Terre (SPOT) images with 
unsupervized classification. 

Phinn et al. (2002) used the VIS model as a conceptual framework for 
describing the landcover of the city of Brisbane (Australia) and applied different 
image processing methods (including unsupervised classification, visual ortho-
photo interpretation, and linear spectral unmixing). The VIS model was used as a 
framework also by Wu & Murray (2003) and Wu (2004), though the main effort 
in both of these papers was on modelling impervious surfaces in and around the 
city of Columbus (USA). 

According to Herold et al. (2005), previous studies have reported that for the 
purposes of urban remote sensing scanner systems with 5 m ground instantaneous 
field of view (GIFOV) could be considered optimal. In the case of a coarser 
spatial resolution categorical urban landcover classes would have some inherent 
ambiguity. The existence of mixed pixels on satellite imagery acquired over 
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urban areas is well noted in the literature (Ridd, 1995; Small, 2002; Wu & Murray, 
2003; etc.). Improved spatial resolution tends to reduce the problem of mixed 
pixels (Ridd, 1995), though Small (2003) noted that even high resolution IKONOS 
imagery of urban areas has a significant amount of spectrally heterogeneous pixels. 

 
 

Spectral  unmixing 
 
Spectral unmixing of satellite images is one of the most widely used methods 

for deriving information from mixed pixels (Lu et al., 2003). According to 
Lunetta (1998), spectral mixture analysis was developed for interpreting High 
Spectral Resolution Advanced Visible/Infrared Image Spectrometer (HSR AVIRIS) 
data and was later expanded to be used with Landsat data. The spectral unmixing 
method has been successfully used for assessing forest thinning (Lunetta, 1998) and 
for forest landcover/landuse change detection (e.g. Lu et al., 2003; Souza et al., 
2003). 

The idea behind linear spectral mixture analysis is that every image pixel is a 
mixture of different components (called endmembers) and the spectrum recorded 
by the sensor is a linear combination of endmember spectra (Tompkins et al., 
1997). It has to be kept in mind that the assumption of linear mixing holds only if 
multiple scattering between different landcover types is insignificant (Tompkins 
et al., 1997; Wu & Murray, 2003). Although multiple scattering might have some 
effect on spectral unmixing, previous research has established that it can be 
neglected in the case of urban areas (Small, 2002; Wu & Murray, 2003). 

Therefore, in the case of linear spectral mixing the value of a pixel in an image 
for a band equals the weighted sum of the radiance values for that band of all 
targets present in the pixel:  
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where 1, ,i m= …  (number of spectral bands); 1, ,k n= …  (number of end-
members); iR  is the value of a pixel in band ;i  kf  is the fraction of endmember 
k  in that pixel; ikR  is the radiance of endmember k  in band ;i  and iER  is the 
unmodelled residual in band i  (Weng et al., 2004). 

Usually the endmember fractions in a pixel are constrained to sum to unity 
and each endmember fraction itself is expected not to have a negative value or be 
greater than 1 (Weng et al., 2004):  
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The model root mean square ( )RMS  error based on the residuals from formula (1) 
(Weng et al., 2004) is:  

2
1( ) / .m

iiRMS ER m
=

= ∑   (3) 



 22

Endmembers used for spectral unmixing can be derived from the image itself 
(called image endmembers), or measured in a laboratory or in field conditions 
(reference or library endmembers) (Lunetta, 1998). Tompkins et al. (1997) de-
scribed also the creation and use of virtual endmembers, i.e. endmembers that 
are spectrally �purer� than the potential image endmembers. All in all image 
endmembers are most widely used as they are relatively easy to define and are in 
the same radiometric scale as the image itself (Weng et al., 2004). 

To a large extent the success of spectral unmixing rests on endmember 
selection (Tompkins et al., 1997). It is widely noted that image endmembers 
should be selected from the extreme values of the image spectral feature space. 
This step in image analysis is based on the assumption that the extreme values 
represent spectrally the purest pixels, i.e. composed only of one endmember 
(Roberts et al., 1998). 

In order to use the VIS model components as endmembers for linear spectral 
unmixing, their variation in spectral values over the image has to be accounted 
for (Song, 2005). Most of this variation can be attributed to impervious surfaces 
that vary from bright (e.g. concrete, glass) to dark objects (e.g. asphalt) (Herold et 
al., 2004). The same has been found to hold for vegetation and soil (Wu, 2004). 

Wu (2004) proposed the normalized spectral unmixing method for decreasing 
endmember spectral variability to facilitate the use of the VIS model components 
as endmembers. The normalized reflectance R  in band b  for a given pixel can 
be expressed by (Wu, 2004): 
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where bR  is the radiance of a pixel in band ,b  N  is the number of spectral bands, 
and µ  is the average reflectance of a pixel over all the spectral bands. The 
normalized spectral unmixing method was further also used by Zhang et al. 
(2005) for assessing the abundance of different lichen species on a rock surface. 
 
 

DATA  AND  METHODS 

Study  area 
 
The study area is located in South-Central Estonia and includes the area of the 

second largest town in Estonia, Tartu (~ 100 000 inhabitants), together with its 
immediate surroundings (Fig. 1). Tartu has experienced outward growth in the 
past years, mainly in the direction of major highways originating from the town. 
To the north of the town lies a former Soviet army airfield (Raadi airfield). 
Agricultural fields and forests surround the urban area. The Emajõgi River flows 
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Fig. 1. The study area is bounded by the grey box. The Ihaste subregion is highlighted by the white 
box.  

 
through the town centre and two stillwater bodies (the Anne Channel and the 
fishponds of Haaslava) lie also within the study area. 

 
 

Data  and  software 
 
Three satellite images covering a time span of 13 years were utilized in this 

research. The images from 16 May 1988 and 24 August 1995 were acquired by 
Landsat 5 TM and the image from 3 May 2001, by Landsat 7 ETM+. All three 
images were acquired in relatively favourable atmospheric conditions with a high 
atmospheric transparency measured at Tõravere meteorological station ~ 20 km 
from Tartu. Therefore no atmospheric correction was considered necessary. 
Furthermore, Song et al. (2001) did not consider atmospheric factors of major 
influence on the accuracy of unmixing results. Their study used image endmembers 
and their spectral signatures for every image independently of others. All reflective 
bands (except for the thermal band 6) were used for spectral unmixing. 

The IDRISI 32 Release Two software package (Eastman, 2001a, 2001b) 
was used for image processing. Pixel values from the unmixed fraction  
images were calculated with the public domain software Lokaalstatistikud 
developed at the Institute of Geography, University of Tartu, downloadable at 
http://map.gg.ut.ee/kalle_r/Lokaalstatistikud/. 



 24

Data  processing 
 
The satellite images were georeferenced to the Estonian basic map using black 

and white orthophotos dating from 1995 with the IDRISI Resample module. The 
image ground resolution was kept at 30 m and the resulting root mean square error 
was less than 0.3 Landsat TM pixels. For subsequent image processing a 10 km 
by 12 km area was windowed from the Landsat scenes, so that the whole town of 
Tartu with the neighbouring settlements, the Raadi airfield northwards from the 
town, and agricultural areas and forests around the town were within the images. 

In determining the mixing space topology (Small, 2004), a principal component 
transformation was conducted on the spectrally normalized images and scatterplots 
of the first three components were constructed for every image date. Subsequent 
inspection showed that the extreme areas of the mixing space corresponded to 
soil, vegetation, and water. As water bodies are not included in the VIS model, a 
binary image mask for terrestrial (non-water) pixels was created. 

Removal of water surfaces revealed impervious surfaces as image endmember 
(Fig. 2). Also an outward cloud of pixels spans out on the line connecting impervious  
 

 

 
 

Fig. 2. Scattergrams of the first three principal components for the 16 May 1988 Landsat TM image 
with water surfaces masked out. Approximate locations of main landcover types on the mixture 
space projections are shown. 
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Fig. 3. Typical endmember signatures for the 1988 normalized Landsat TM scene. 

 
 
surfaces and vegetation endmembers in the mixing space that corresponded to 
areas of forest inside and around the town. This was incorporated into the mixture 
model as a shade endmember. The shade endmember should be considered as a 
mixture of vegetation and shadow, which is not directly observable in medium 
resolution satellite images. 

Typical spectral signatures for the chosen endmembers from the 1988 Landsat 
scenes normalized according to formulas (4) and (5) are shown in Fig. 3. 

 
 

Accuracy  assessment 
 
For the purpose of accuracy assessment the unmixed fraction images were 

compared to the Estonian basic map at 1 : 10 000 scale. The fractions of all basic 
map classes were calculated in a circular kernel with a radius of 2 Landsat TM 
pixels (60 m). Next, the basic map categories were regrouped into two classes � 
impervious surfaces and pervious surfaces (classes associated with vegetation 
and soil). As the basic map categories depict land use rather than landcover, 
their assignment to the pervious or impervious class was decided according to 
their description in the Estonian Land Board�s mapping procedure (Maa-ameti 
kartograafiabüroo, 2002). Water surfaces are not included in the VIS model 
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categories and therefore a separate class �other� was created for reclassification 
purposes. 

Accuracy assessment was conducted in 1400 stratified random points, which 
were generated into 7 subset areas (each approximately 1.5 by 1.5 km in size). 
The error of unmixed fraction images was quantified using the generalized area-
based confusion matrix proposed by Lewis & Brown (2001). The generalized 
area-based confusion matrix is somewhat similar to a regular confusion matrix 
only that it does not require sampled random points used for accuracy assessment 
to have a hard membership to one class only � it allows classes to have an area 
(or a probability) in the sampled point. 

 
 

Ihaste  case  study 
 
To reveal the changes in the VIS model components at Ihaste between 1988 

and 2001, 30 sample points were created in areas where a landcover change was 
known beforehand. The fractions of vegetation, soil, and shade were calculated in 
those sample points with the public domain software Lokaalstatistikud using a 
circular kernel with a radius of 2 Landsat TM pixels. Simple calculus (addition, 
subtraction of mean fraction values calculated from the unmixed fraction images) 
was used for analysing the fraction changes. 

 
 

RESULTS 

The  unmixed  fraction  images 
 
Figure 4 shows the unmixed fraction images of vegetation, soil, and impervious 

surface for 1988, 1995, and 2001. Vegetation fraction images (upper row in 
Fig. 4) were found by adding the vegetation endmember fraction and the shade 
endmember fraction images. High fractions of vegetation were found on areas 
covered with low and dense vegetation, lower fractions were associated with 
forested areas, and fractions close to zero with some agricultural fields around the 
town and surfaces expected to be covered with impervious materials. High 
fractions of shade were primarily associated with forested areas around the town, 
parks (such as Toomemägi for example), and fractions close to zero with agri-
cultural fields around Tartu. 

Higher fractions of impervious surface cover (middle row in Fig. 4) were 
mainly associated with urban areas and they represent known impervious surface 
locations in Tartu. The fraction images of soil are presented in Fig. 4 in the bottom 
row. Lower fractions of soil are associated with urban areas, higher fractions with 
agricultural fields around Tartu. 
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Fig. 4. The unmixed fraction images: (a) vegetation, (b) impervious surfaces, (c) soil. A scalebar for 
the density of grey is given beside the fraction images. 

 
 

Accuracy  assessment 
 
The unmixed fraction images were then compared to the Estonian basic map. 

Table 1 presents the generalized area based confusion matrix for the data. The 
overall error of spectral unmixing of the 1995 Landsat TM image was found to be 
9% (by classes: vegetation with soil overestimated by 6%, impervious surfaces 
underestimated by 15%). The model RMS error images calculated according to 
formula (3) show that approximately 2 DN (i.e. < 5% of the initial data) remains 
unmodelled in every spectral band. By a rule of thumb it is the riverbanks of the 
Emajõgi that demonstrate the highest values of model RMS error. 
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Table 1. The generalized area-based confusion matrix for quantifying the spectral unmixing error 
 

 Impervious surface Vegetation and soil Other 

Impervious surface   36.3826 �38.1873 1.8047 
Vegetation and soil 20.134 �24.4142 4.2802 
Other   �2.6466   �2.0385 4.6851 

 
 

Ihaste  case  study 
 
The Ihaste case study subregion is shown in Fig. 1 bounded by a white box. 

The case study results of Ihaste indicate that forest areas will be very stable 
(variation 1�2%) if vegetation, shade, and soil fractions are taken as a whole 
throughout the study years. If the fractions of vegetation, shade, and soil are 
considered separately then phenologic changes will become evident. The unmixed 
vegetation endmember estimates of the years 1988 and 2001 (May) have lower 
fractions than the 1995 estimates (August). The opposite holds true for soil � 
higher fractions in 1988 and 2001 and lower in 1995. The shade fractions are 
relatively stable (variation ~ 5%) throughout the study period. 

The areas of Uus-Ihaste, which according to the 1995 orthophoto were 
developed, underwent a decline in vegetation and shade fractions between 1988 
and 1995. Those fractions are generally stable from 1995 to 2001. Some areas 
where undeveloped land parcels have existed in between developed parcels have 
undergone further decline in vegetation and shade fractions. Both of these cases 
demonstrate a rise in the soil fraction, though this rise is not sufficient enough to 
keep the pervious surface fraction stable. The pervious surface fractions have 
decreased from a couple of percentage points (attributable to georeferencing RMS 
error) to 40%. 

Agricultural fields that were not developed by 2001 show a sharp decrease in 
soil fractions. A slight phenologic change is present as the August 1995 image 
shows somewhat lower soil fractions than the May 2001 image. The fractions of 
vegetation and shade increase so that the resulting fraction of pervious surface 
remains relatively stable (variation 1�2%). According to the sample point estimates, 
Uus-Ihaste experienced a substantial decrease in the pervious surface cover (and 
concurrently an increase in the impervious surface cover) between 1988 and 2001. 
According to the sample points used, most of this landcover change occurred 
between 1988 and 1995. 

 
 

DISCUSSION 
 
The main aim of this research was to conduct a linear spectral unmixing of 

Landsat TM imagery and map the areas of impervious surfaces, soil, and 
vegetation within and around Tartu in 1988, 1995, and 2001. Prior to spectral 
unmixing the satellite data were normalized according to the procedure suggested 
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by Wu (2004). After having masked out water surfaces, vegetation, impervious 
surface, and soil could be used as image endmembers. Examination of mixing 
spaces revealed that the normalization procedure did not completely remove the 
brightness variation of vegetation. Because of this a fourth endmember, called 
shade, was introduced into the mixing model that was later added to the unmixed 
vegetation endmember fraction to keep the fraction images in the VIS model 
framework. This addition can be justified because inspection of the mixing spaces 
showed that endmember shade lied on the axis connecting the areas of �pure� 
vegetation and water (i.e. spectrally normalized dark objects). 

At this point the question why the normalization method did not remove the 
spectral variation of dark (e.g. forests) and bright (e.g. pastures) vegetation should 
be raised. The main reason here is most probably the difference in spectral response 
for dark and bright vegetation as the landcover for either case is different. For this 
reason for example Adams et al. (1995) used an endmember called non-photo-
synthetic vegetation, which depicted tree trunks, branches, and other tree parts 
that do not contain leaf chlorophyll. A closer inspection of the fraction images 
called shade in this study would reveal that its higher fractions are associated with 
areas covered with trees � inner town parks, cemeteries, and forests. 

The use of the Estonian basic map for the purpose of accuracy assessment in 
this study could be questioned as most of the basic map categories depict land use 
rather than landcover, which in turn would mean that the reclassification scheme 
for transforming the basic map classes into VIS classes could be questionable. 
Nevertheless, the Estonian basic map is the best of the available data sets � 
especially considering the scale of Landsat imagery � on the town of Tartu. In 
principle it is possible to derive �ground truth� maps for all VIS model classes 
from it. 

Another possibility would be to use field data or ground truthing. However, 
this was not deemed necessary, as there is some doubt that this would have 
produced better results than the basic map could offer. Furthermore, the accuracy 
assessment was conducted on the 1995 unmixed fraction images and the basic map 
is based on the 1995 black and white orthophotos. Ground truthing would have 
some point if the accuracy assessment were conducted on an unmixed satellite 
image of a more recent date (e.g. 2004 or 2005). 

The basic map does not essentially provide any information on vegetation 
abundance, which in the context of this study would be important. However, this 
should have no influence on the accuracy assessment results as vegetation and 
soil were treated as one class (pervious surface). If sparse vegetation is present 
(e.g. a summer crop field in the spring image), it is by default considered as a 
mixture of soil and vegetation. 

As for the Ihaste subregion case study it must be stressed that these results 
cannot be considered in a wider context, as this would lead to biased conclusions. 
The sampled points in the study area are not really representative for describing 
any changes as they were not randomly created. They were specifically chosen to 
determine how certain landcover changes affect the fractions of VIS components 
in the unmixed fraction images. 
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In conclusion it should be emphasized that the fraction estimation error of 
impervious surface in this study (15%) is comparable to the results obtained in 
other studies (Wu, 2004; Yang & Liu, 2005). Further research should still focus 
on finding better methods of deriving fuzzy ground truth maps, as the method 
described above leaves the investigator to reclassify a categorical ground truth 
map into fewer landcover classes (such as vegetation, impervious surface, and 
soil) the results of which could be ambiguous. 

 
 

CONCLUSIONS 
 
Urban areas are characterized by a pattern of very heterogeneous patches 

resulting from co-occurrence of different materials within the ground instantaneous 
field of view of a moderate resolution scanner, e.g. Landsat Thematic Mapper 
(TM). Therefore categorical mapping algorithms have limited applications in 
remote sensing of urban areas. In this situation the linear spectral unmixing method 
has been proved to be much more effective. The vegetation�impervious surface�
soil (VIS) model proposed by Ridd (1995) offers a good conceptual framework 
for describing urban areas using moderate resolution sensor data. The VIS model 
proposes that an area (e.g. an image pixel) is a composite of vegetation, impervious 
surface, and soil fractions. 

The main goal of this research was to derive the fraction images of vegetation, 
impervious surface, and soil from Landsat TM/ETM+ data acquired over Tartu, 
Estonia, from three different years (1988, 1995, and 2001) using the method of 
linear spectral unmixing. 

The second aim of this research was to compare the unmixed fraction images 
with the Estonian basic map at 1 : 10 000 scale (as an accuracy assessment of the 
unmixed fraction images). The basic map itself was derived by visual interpretation 
of orthophotos. The overall error in the study area was found to be 9% (respective 
errors by classes: impervious surfaces 15%, vegetation and soil 6%). 

Further, a case study in a Tartu suburban area (Ihaste) was conducted. Changes 
in the pervious surface cover were calculated and analysed. The results indicate 
that Ihaste as an expanding suburbia on the outskirts of Tartu experienced sub-
stantial loss of pervious surface between 1988 and 2001. Interestingly, most of 
the pervious to impervious conversion occurred between 1988 and 1995. The 
extent of this change has to be still validated in some other way as the fraction 
changes were found in a handful of non-randomly created sample points. 
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Linnaliste  alade  kaugseire:  Tartu  kohalt  saadud  
satelliidipiltide  spektrisegu  lineaarne  lahutamine 

 
Tõnis Kärdi 

 
Linnadele on omane väga heterogeenne ruum, mis põhjustab erinevate pin-

dade üheaegset koosesinemist keskmise ruumilise lahutusega satelliidi Landsat 
skanneri Thematic Mapper (TM) sensori hetkvaateväljas. Artikli peamiseks ees-
märgiks on kaardistada taimkattega kaetud maapinna, vettpidava pinna ja taim-
katteta mullapinna paiknemist Tartu linnas ja selle lähiümbruses Landsati TM-i 
satelliidipiltidelt aastatel 1988, 1995 ja 2001. Eelnimetatud maakatete kaardista-
miseks on kasutatud spektrisegu lineaarse lahutamise meetodit. Leitud 1995. aasta 
fraktsioonipiltidele on antud veahinnang Eesti põhikaardi alusel. Spektrisegu 
lahutamise üldine viga on 9% (taimkate ja taimkatteta mullapind 6%, vettpidav 
pind 15%). 

 


