headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2020
Vol. 37, Issue 2
Vol. 37, Issue 1
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

A comparative study of oil shale-bearing intervals in the Lower Cretaceous Jiufotang Formation in the Beipiao Basin, Northeast China based on sedimentary organic-facies theory; pp. 32–50

(Full article in PDF format) https://doi.org/10.3176/oil.2020.1.02


Authors

Penglin Zhang, Qingtao Meng, Zhaojun Liu, Fei Hu, Min Xue

Abstract

In this paper, the sedimentary organic facies is defined as a stratigraphic unit that not only contains organic matter (OM) of particular abundance, genetic type and spatial distribution, but also is influenced by its sedimentary environment and preservation conditions. This study aims to reveal the characteristics of OM accumulation in sediments. In the current work, three sedimentary organic facies of oil shale (OS) in the Lower Cretaceous Jiufotang Formation in the Beipiao Basin, Northeast China were distinguished on the basis of OM content, source and sedimentary environment. The accumulation conditions and characteristics of oil shale in different sedimentary organic facies are divergent. Deep-lake sapropelic oil shale with a high alginate-originated total organic carbon (TOC) content is deposited in a strongly reducing environment and is featured by high oil yield, medium-high calorific value, medium to low ash content, and low sulfur content. Deposited in a moderately reducing environment and having a medium alginate- and sporinite-derived TOC content, deep-to-semi-deep-lake sapropel–humic sapropelic oil shale is characterized by medium oil yield, medium calorific value, high ash content, and medium sulfur content. Semi-deep-lake humic-sapropelic oil shale with a medium-low terrigenous and alginate-mixed originated TOC is deposited in a weakly reducing environment and is characterized by low oil yield, low calorific value, high ash content, and high sulfur content. The current study of sedimentary organic facies also contributes to predicting high-quality oil shale. The quality of oil shale is controlled by organic matter content and sedimentary environment. Strongly reducing deep lake water with abundant alginate is an ideal environment for the accumulation of high-quality oil shale.

Keywords

oil shale characteristics, sedimentary organic facies, organic matter enrichment model, Beipiao Basin.

References

1.         Hokerek , S , Unal , N. , Altunsoy , M. , Ozcelik , O. , Kuscu , M. Organic facies -characteristics of the Triassic Kasımlar Formation , Anamas-Akseki Platform , Western Taurides , Turkey. Energy Procedia , 2014 , 59 , 150–157.
https://doi.org/10.1016/j.egypro.2014.10.361

2.         Fang , H. , Jianyu , C. , Yongchuan , S. , Yaozong , L. Application of organic facies studies to sedimentary basin analysis: a case study from the Yitong Graben , -China. Org. Geochem. , 1993 , 20(1) , 27–42.
https://doi.org/10.1016/0146-6380(93)90078-P

3.         Ercegovac , M. , Kostić , A. Organic facies and palynofacies: Nomenclature , classification and applicability for petroleum source rock evaluation. Int. J. Coal Geol. , 2006 , 68(1–2) , 70–78.
https://doi.org/10.1016/j.coal.2005.11.009

4.         Gentzis , T. , Carvajal-Ortiz , H. , Tahoun , S. S. , Deaf , A. , Ocubalidet , S. Organic facies and hydrocarbon potential of the early-middle Albian Kharita -Formation in the Abu Gharadig Basin , Egypt , as demonstrated by palynology , organic -petrology , and geochemistry. Int. J. Coal Geol. , 2019 , 209 , 27–39.
https://doi.org/10.1016/j.coal.2019.05.002

5.         Li , L. , Liu , Z. J , George , S. C. , Sun , P. C. , Xu , Y. B. , Meng , Q. T. , Wang , K. B. , Wang , J. X. Lake evolution and its influence on the formation of oil shales in the Middle Jurassic Shimengou Formation in the Tuanyushan area , Qaidam Basin , NW China. Geochem. , 2019 , 79(1) , 162–177.
https://doi.org/10.1016/j.geoch.2018.12.006

6.         Chen , Y. , Zhu , Z. , Zhang , L. Control actions of sedimentary environments and sedimentation rates on lacustrine oil shale distribution , an example of the oil shale in the Upper Triassic Yanchang Formation , southeastern Ordos Basin (NW China). Mar. Petrol. Geol. , 2019 , 102 , 508–520.
https://doi.org/10.1016/j.marpetgeo.2019.01.006

7.         Xu , J. , Liu , Z. , Bechtel , A. , Meng , Q. , Sun , P. , Jia , J. , Cheng , L. , Song , Y. -Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao -Basin (NE China): Implications from sequence stratigraphy and geochemistry. Int. J. Coal Geol. , 2015 , 149 , 9–23.
https://doi.org/10.1016/j.coal.2015.07.005

8.         Jia , J. , Bechtel , A. , Liu , Z. , Strobl , S. A. I. , Sun , P. , Sachsenhofer , R. F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses. Int. J. Coal Geol. , 2013 , 113 , 11–26.
https://doi.org/10.1016/j.coal.2013.03.004

9.         Yu , Z. L. , Zhu , H. Y. The oil shale sedimentary characteristics in Jiufotang -Formation of Jianchang Basin , in the western Liaoning province. Journal of Oil and Gas Technology , 2013 , 35(1) , 53–57 , 174 (in Chinese).

10.      GB/T 212-2008. Proximate Analysis of Coal. The State Standards of the People’s Republic of China , 2008 (in Chinese).

11.      GB/T 213-2008. Determination of Calorific Value of Coal. The State Standards of the People’s Republic of China , 2008 (in Chinese).

12.      Liu , R. , Liu , Z. J. Oil shale resource situation and multi-purpose development potential in China and abroad. Journal of Jilin University (Earth Science Edition) , 2006 , 36(6) , 892–898 (in Chinese).

13.      Song , Y. , Liu , Z. , Gross , D. , Meng , Q. , Xu , Y. , Li , S. Petrology , mineralogy and geochemistry of the Lower Cretaceous oil-prone coal and host rocks from the Laoheishan Basin , northeast China. Int. J. Coal Geol. , 2018 , 191 , 7–23.
https://doi.org/10.1016/j.coal.2018.02.018

14.      Song , Y. , Liu , Z. , Bechtel , A. , Sachsenhofer , R. F. , Groβ , D. , Meng , Q. Paleoenvironmental reconstruction of the coal- and oil shale-bearing interval in the lower Cretaceous Muling Formation , Laoheishan Basin , northeast China. Int. J. Coal Geol. , 2017 , 172 , 1–18.
https://doi.org/10.1016/j.coal.2017.01.010

15.      Strobl , S. A. I. , Sachsenhofer , R. F. , Bechtel , A. , Meng , Q. , Sun , P. Deposition of coal and oil shale in NE China: The Eocene Huadian Basin compared to the coeval Fushun Basin. Mar. Petrol. Geol. , 2015 , 64 , 347–362.
https://doi.org/10.1016/j.marpetgeo.2015.03.014

16.      Taylor , G. H. , Teichmüller , M. , Davis , A. , Diessel , C. F. K. , Littke , R. , Robert , P. Organic Petrology. Gebrüder Borntraeger , Berlin-Stuttgart , 1998.

17.      Calder , J. H. , Gibling , M. R. , Mukhopadhyay , P. K. Peat formation in a Westphalian B piedmont setting , Cumberland Basin , Nova Scotia: implications for the maceral-based interpretation of rheotrophic and raised paleomires. Bull. Soc. Geol. Fr. , 1991 , 162(2) , 283–298.

18.      Gruber , W. , Sachsenhofer , R. F. Coal deposition in the Noric Depression -(Eastern Alps): raised and low-lying mires in Miocene pull-apart basins. Int. J. Coal Geol. , 2001 , 48(1–2) , 89–114.
https://doi.org/10.1016/S0166-5162(01)00049-0

19.      Song , Y. , Liu , Z. , Meng , Q. , Xu , J. , Sun , P. , Cheng , L. , Zheng , G. Multiple controlling factors of the enrichment of organic matter in the Upper Cretaceous oil shale sequences of the Songliao Basin , NE China: Implications from geochemical analyses. Oil Shale , 2016 , 33(2) , 142–166.
https://doi.org/10.3176/oil.2016.2.04

20.      Rogers , M. A. , Koons , C. B. Generation of light hydrocarbons and establishment of normal paraffin preferences in crude oils. In: Origin and Refining of Petroleum (McGrath , H. G. , Charles , M. E. , eds.) , ACS Publications , 1971 , 67–80.
https://doi.org/10.1021/ba-1971-0103.ch003

21.      Jones , R. W. Organic facies. In: Advances in Petroleum Geochemistry (Brooks , J , Welte , D. , eds.) , 2 , Academic Press , London , 1987 , 1–90.

22.      Yao , S. P. , Zhang , K. , Hu , W. X. , Fang , H. F. , Jiao , K. Sedimentary organic -facies of the Triassic Yanchang Formation in the Ordos Basin. Oil & Gas -Geology , 2009 , 30(1) , 74–84 , 89 (in Chinese).

23.      Carrol , A. R. Upper Permian lacustrine organic facies evolution , Southern -Junggar Basin , NW China. Org. Geochem. , 1998 , 28(11) , 649–667.
https://doi.org/10.1016/S0146-6380(98)00040-0

24.      Haas , J. , Götz , A. E. , Pálfy , J. Late Triassic to Early Jurassic palaeogeography and eustatic history in the NW Tethyan realm: New insights from -sedimentary and organic facies of the Csővár Basin (Hungary). Palaeogeogr. , Palaeocl. , 2010 , 291(3–4) , 456–468.
https://doi.org/10.1016/j.palaeo.2010.03.014

25.      Talbot , M. R. , Livingstone , D. A. Hydrogen index and carbon isotope of -lacustrine organic matter as lake level indicators. Palaeogeogr. , Palaeocl. , 1989 , 70(1–3) , 121–137.
https://doi.org/10.1016/0031-0182(89)90084-9

26.      Carroll , A. R. , Brassell , S. C. , Graham , S. A. Upper Permian lacustrine oil shales , southern Junggar Basin , northwest China. AAPG Bull. , 1992 , 76(12) , 1874–1902.
https://doi.org/10.1306/BDFF8B0A-1718-11D7-8645000102C1865D

27.     Liu , Z. J. , Liu , R. Oil shale resource state and evaluating system. Earth Sci. Front. , 2005 , 12(3) , 315–323 (in Chinese).

 
Back

Current Issue: Vol. 37, Issue 2, 2020




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December