headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
Vol. 68, Issue 3
Vol. 68, Issue 2
Vol. 68, Issue 1
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Detecting overlapping community structure: Estonian network of payments; pp. 79–88

(Full article in PDF format) https://doi.org/10.3176/proc.2019.1.08


Authors

Stephanie Rendón de la Torre, Jaan Kalda, Robert Kitt, Jüri Engelbrecht

Abstract

Revealing the community structure exhibited by real networks is a fundamental phase towards a comprehensive understanding of complex systems beyond the local organization of their components. Community detection techniques help in providing insights into understanding the local organization of the components of networks. We identified and investigated the overlapping community structure of an interesting and unique case of study: the Estonian network of payments. In order to perform the study, we used the Clique Percolation Method and explored statistical distribution functions of the communities, where in most cases we found scale-free properties. In this network the nodes represent Estonian companies and the links represent payments made between the companies. Our study adds to the literature of complex networks by presenting the first overlapping community detection analysis of a country’s network of payments.

Keywords

complex networks, economic networks, overlapping communities, scale-free networks.

References

    1.  Newman , M. E. J. Networks: An introduction. Oxford University Press , 2010.
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

   2.  Palla , G. , Derényi , I. , Farkas , I. , and Vicsek , T. Uncovering the overlapping community structure of complex net­works in nature and society. Nature , 2005 , 435 , 814–818.
https://doi.org/10.1038/nature03607

   3.  Derényi , I. , Palla , G. , and Vicsek , T. Clique percolation in random networks. Phys. Rev. Lett. , 2005 , 94(16) , 160202.
https://doi.org/10.1103/PhysRevLett.94.160202

   4.  König , M. D. and Battiston , S. From graph theory to models of economic networks , a tutorial. In Networks , Topology and Dynamics (Naimzada , A. K. , Stefani , S. , and Torriero , A. , eds) , Lecture Notes in Econom. and Math. Systems , 2009 , 613 , 23–63.

   5.  Souma , W. , Fujiwara , Y. , and Aoyama , H. Heterogeneous economic networks. In The Complex Networks of Economic Interactions (Namatame , A. , Kaizouji , T. , and Aruka , Y. , eds) , Lecture Notes in Econom. and Math. Systems , 2006 , 567 , 79–92.
https://doi.org/10.1007/3-540-28727-2_5

   6.  Battiston , S. , Rodrigues , J. F. , and Zeytinoglu , H. The network of inter-regional direct investment stocks across Europe. Advs. Complex Syst. , 2007 , 10(1) , 29–51.
https://doi.org/10.1142/S0219525907000933

   7.  Glattfelder , J. B. and Battiston , S. Backbone of complex networks of corporations: the flow of control. Phys. Rev. E. , 2009 , 80(3).
https://doi.org/10.1103/PhysRevE.80.036104

   8.  Nakano , T. and White , D. Network structures in industrial pricing: the effect of emergent roles in Tokyo supplier-chain hierarchies. Struct. and Dyn. , 2007 , 2(3) , 130–154.

   9.  Reyes , J. , Schiavo , S. , and Fagiolo , G. Assessing the evolution of international economic integration using random-walk betweenness centrality: the cases of East Asia and Latin America. Advs. Complex Syst. , 2007 , 11(5) , 685–702.
https://doi.org/10.1142/S0219525908001945

10.  Lublóy , A. Topology of the Hungarian large-value transfer system. Magyar Nemzeti Bank (Central Bank of Hungary) MNB Occasional Papers , 2006 , 57.

11.  Inaoka , H. , Nimoniya , T. , Taniguchi , K. , Shimizu , T. , and Takayasu , H. Fractal network derived from banking transactions – an analysis of network structures formed by financial institutions. Bank of Japan Working Papers , 2004.

12.  Soramäki , K. , Bech , M. L. , Arnold , J. , Glass , R. J. , and Beyeler , W. E. The topology of interbank payment flows. Physica A , 2007 , 379(1) , 317–333.
https://doi.org/10.1016/j.physa.2006.11.093

13.  Boss , M. , Helsinger , H. , Summer , M. , and Thurner , S. The network topology of the interbank market. Quant. Finance , 2004 , 4(6) , 677–684.
https://doi.org/10.1080/14697680400020325

14.  Iori , G. and Jafarey , S. Criticality in a model of banking crisis. Physica A , 2001 , 299(1) , 205–212.
https://doi.org/10.1016/S0378-4371(01)00297-7

15.  Iori , G. , De Masi , G. , Precup , O. V. , Gabbi , G. , and Caldarelli , G. A network analysis of the Italian over­night money market. J. Econ. Dyn. Control. , 2007 , 32(1) , 259–278.
https://doi.org/10.1016/j.jedc.2007.01.032

16.  Vitali , S. and Battiston , B. The community structure of the global corporate network. PLoS ONE , 2014 , 9(8) , 0104655.
https://doi.org/10.1371/journal.pone.0104655

17.  Fenn , D. , Porter , M. , McDonald , M. , Williams , S. , Johnson , N. , et al. Dynamic communities in multi­channel data: an application to the foreign exchange market during the 2007–2008 credit crisis. Chaos , 2009 , 19(3) , 3184538.
https://doi.org/10.1063/1.3184538

18.  Piccardi , C. , Calatroni , L. , and Bertoni , F. Communities in Italian corporate networks. Physica A , 2010 , 389(22) , 5247–5258.
https://doi.org/10.1016/j.physa.2010.06.038

19.  Bóta , A. and Kresz , M. A high resolution clique-based overlapping community detection algorithm for small-world networks. Informatica , 2015 , 39(2) , 177–187.

20.  Traud , A. L. , Mucha , J. P. , and Porter , M. A. Social structure of Facebook networks. Physica A , 2012 , 391(16) , 4165–4180.
https://doi.org/10.1016/j.physa.2011.12.021

21.  González , M. C. , Herrmann , H. J. , Kertész , J. , and Vicsek , T. Community structure and ethnic preferences in school friendship networks. Physica A , 2007 , 379(1) , 307–316.
https://doi.org/10.1016/j.physa.2007.01.002

22.  Palla , G. , Barabási , A. L. , and Vicsek , T. Quantifying social group evolution. Nature , 2007 , 446(7136) , 664–667.
https://doi.org/10.1038/nature05670

23.  Pollner , P. , Palla , G. , and Vicsek , T. Preferential attach­ment of communities: the same principle , but a higher level. Europhys. Lett. , 2006 , 73(3) , 478–484.
https://doi.org/10.1209/epl/i2005-10414-6

24.  Lewis , A. C. F. , Jones , N. S. , Porter , M. A. , and Deane , C. M. The function of communities in protein interaction networks at multiple scales. BMC Syst. Biol. , 2010 , 4 , 100.
https://doi.org/10.1186/1752-0509-4-100

25.  Guimerá , R. and Amaral , N. Functional cartography of complex metabolic networks. Nature , 2005 , 433 , 895–900.
https://doi.org/10.1038/nature03288

26.  Ravasz , E. , Somera , A. L. , Mongru , D. A. , Oltvai , Z. N. , and Barabási , A. L. Hierarchical organization of modularity in metabolic networks. Science , 2002 , 297(5586) , 1551–1555.
https://doi.org/10.1126/science.1073374

27.  Dourisboure , Y. , Geraci , F. , and Pellegrini , M. Extraction and classification of dense communities in the web. In Proceedings of the 16th International Conference on the World Wide Web , 2007 , 1 , 461–470.
https://doi.org/10.1145/1242572.1242635

28.  Newman , M. E. J. Detecting community structure in networks. Eur. Phys. J. B , 2004 , 38(2) , 321–330.
https://doi.org/10.1140/epjb/e2004-00124-y

29.  Yang , Z. , Algesheimer , R. , and Tessone , C. J. A comparative analysis of community detection algo­rithms on artificial networks. Sci. Rep. , 2016 , 6 , 30750.
https://doi.org/10.1038/srep30750

30.  Hopcroft , J. , Khan , O. , Kulis , B. , and Selman , B. Tracking evolving communities in large linked networks. Proc. Natl. Acad. Sci. USA , 2004 , 110 , 5249–5253.
https://doi.org/10.1073/pnas.0307750100

31.  Scott , J. Social Network Analysis: A Handbook. Sage Publications , UK , 2000.

32.  Gavin , A. C. , Bösche , M. , Krause , R. , Grandi , P. , Marzioch , M. , et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature , 2002 , 6868 , 141–147.
https://doi.org/10.1038/415141a

33.  Devi , J. C. and Poovammal , E. An analysis of over­lapping community detection algorithms in social networks. Proc. Comp. Sci. , 2016 , 89 , 349–358.
https://doi.org/10.1016/j.procs.2016.06.082

34.  Xie , J. , Kelley , S. , and Boleslaw , K. S. Overlapping community detection in networks: the-state-of-the-art and comparative study. ACM Comput. Surv. , 2013 , 45(4) , Art. 43 , 1–35.

35.  Ding , Z. , Zhang , X. , Sun , D. , and Luo , B. Overlapping community detection based on network de­composition. Sci. Rep. , 2016 , 6 , 24115.
https://doi.org/10.1038/srep24115

36.  Everett , M. G. and Borgatti , S. P. Analyzing clique overlap. Connections , 1998 , 21(1) , 49–61.

37.  Shen , H. W. Community Structure of Complex Networks. Springer Science & Business Media , 2013.
https://doi.org/10.1007/978-3-642-31821-4

38.  Newman , M. E. J. Fast algorithm for detecting com­munity structure in networks. Phys. Rev. E , 2004 , 69 , 066133.
https://doi.org/10.1103/PhysRevE.69.066133

39.  Clauset , A. , Newman , M. E. J. , and Moore , C. Finding community structure in very large networks. Phys. Rev. E , 2004 , 70(6) , 066111.
https://doi.org/10.1103/PhysRevE.70.066111

40.  Rendón de la Torre , S. , Kalda , J. , Kitt , R. , and Engelbrecht , J. On the topologic structure of economic complex networks: empirical evidence from large scale payment network of Estonia. Chaos Soliton. Fract. , 2016 , 90 , 18–27.
https://doi.org/10.1016/j.chaos.2016.01.018

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December