headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
Vol. 68, Issue 1
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Energy efficiency profiles for unmanned ground vehicles; pp. 55–65

(Full article in PDF format) https://doi.org/10.3176/proc.2019.1.04


Authors

Eero Väljaots, Raivo Sell

Abstract

The paper investigates energy efficiency validation of unmanned ground vehicles (UGVs). The energy efficiency of the vehicle platform depends on the design elements and the environment as well as navigation algorithms. Verification of all UGV design factors that have measurable influence on energy efficiency involves an integrated measurement system for measuring the dynamic interactions of the vehicle and the environment during the real-condition test mission. Profiles are used for improving and optimizing the UGV design, control system, and comparison with each other. The obtained results are applied for the development, simulation, and testing library used as early-stage product design support.

Keywords

unmanned ground vehicle, energy efficiency, driving dynamics measurement, design evaluation.

References

1. Sadrpour , A. , Jin , J. , and Ulsoy , A. G. Experimental validation of mission energy prediction model for unmanned ground vehicles. In Proceedings of the American Control Conference. Washington DC , USA , 2013 , 5960–5965.
https://doi.org/10.1109/ACC.2013.6580773

2. Tunstel , E. Operational performance metrics for Mars exploration rovers. J. Field Robot. , 2007 , 24 , 651–670.
https://doi.org/10.1002/rob.20205

3. Thueer , T. and Siegwart , R. Mobility evaluation of wheeled all-terrain robots. Robot. Auton. Syst. , 2010 , 58 , 508–519.
https://doi.org/10.1016/j.robot.2010.01.007

4. Jacoff , A. , Messina , E. and Evans , J. Performance evaluation of autonomous mobile robots. Ind. Robot , 2002 , 29 , 259–267.
https://doi.org/10.1108/01439910210425568

5. Van Diggelen , J. , Looije , R. , Mioch , T. , Neerincx , M. A. , and Smets , N. J. J. M. A usage-centered evaluation methodology for unmanned ground vehicles. In The Fifth International Conference on Advances in Computer–Human Interactions. Valencia , Spain , 2012 , 186–191.

6. Lampe , A. and Chatila , R. Performance measure for the evaluation of mobile robot autonomy. In IEEE International Conference on Robotics and Automation. Orlando , USA , 2006 , 4057–4062.
https://doi.org/10.1109/ROBOT.2006.1642325

7. Sell , R. and Petritsenko , A. Early design and simulation toolkit for mobile robot platforms. Int. J. Prod. Develop. , 2013 , 18 , 168–192.
https://doi.org/10.1504/IJPD.2013.053499

8. Sell , R. Model Based Mechatronic Systems Modeling Methodology in Conceptual Design Stage. PhD thesis. Tallinn University of Technology , Estonia , 2007.

9. Sell , R. and Leomar , P. Universal navigation algorithm planning platform for unmanned systems. Solid State Phenomena , 2010 , 164 , 405–410.
https://doi.org/10.4028/www.scientific.net/SSP.164.405

10. Väljaots , E. and Sell , R. Dynamic motion energy efficiency measurement of ground vehicles. In 8th International DAAAM Baltic Conference “Industrial Engineering”. Tallinn , Estonia , 2012 , 367–372.

11. Väljaots , E. Sell , R. , and Kaeeli , M. Motion and energy efficiency parameters of unmanned ground vehicle. Solid State Phenomena , 2015 , 220/221 , 934–939.
https://doi.org/10.4028/www.scientific.net/SSP.220-221.934

12. Väljaots , E. and Sell , R. Unmanned ground vehicle SysML navigation model conducted by energy efficiency. Adv. Mater. Res. , 2014 , 905 , 443–447.
https://doi.org/10.4028/www.scientific.net/AMR.905.443

13. Väljaots , E. and Sell , R. Measurement method and device for vehicle dynamics. In 7th International DAAAM Baltic Conference “Industrial Engineering”. Tallinn , Estonia , 2010 , 451–456.

14. Väljaots , E. , Laaneots , R. , and Sell , R. Uncertainty in ground vehicle dynamics measurement system. Sistemi obrobki informatsii , 2011 , 91 , 52–56.

15. SysML specification , URL. http://sysml.org/ (accessed 2018-06-02).

16. Delligatti , L. SysML Distilled. Pearson Education , New Jersey , 2014.

17. Sell , R. and Leomar , P. Universal navigation algorithm planning platform for unmanned systems. In International Conference Mechatronic Systems and Materials. Vilnius , Lithuania , 2009 , pp. 405–410.

18. Wu , X. , Freese , D. , Cabrera , A. , and Kitch , W. A. Electric vehicles’ energy consumption measurement and estimation. Transport. Res. D Tr.-E. , 2015 , 34 , 52–67.

19. Preda , I. , Covaciu , D. , and Ciolan , G. Coast down test – theoretical and experimental approach. In International Automotive Congress (CONAT 2010). Brasov , Romania , 2010 , 155–162.

20. Väljaots , E. and Trolla , J. Evaluation of low-cost inertial based road pavement smoothness measurement equipment. In 28th International Baltic Road Conference. Vilnius , Lithuania , 2013 , 245–250.

21. Sandberg , U. (ed.). Rolling Resistance – Basic Information and State-of-the-Art on Measurement Methods , Models for Rolling Resistance in Road Infrastructure Asset Management Systems (MIRIAM). Swedish National Road and Transport Research Institute (VTI) , Sweden , 2011.

22. Langhart , J. How to get most realistic efficiency calculation for gearboxes? In International Gear Conference. Lyon , France , 2014 , 54–58.
https://doi.org/10.1533/9781782421955.869

23. Stockman , K. , Dereyne , S. , Defreyne , P. , Algoet , E. , and Derammelaere , S. An efficiency measurement campaign on belt drives. In Energy Efficiency in Motor Driven Systems (EEMODS 2015). Helsinki , Finland , 2015 , 366–377.

24. Stockman , K. , Dereyne , S. , Defreyne , P. , Algoet , E. , and Derammelaere , S. Efficiency measurement campaign on gearboxes. In Energy Efficiency in Motor Driven Systems (EEMODS 2015). Helsinki , Finland , 2015 , 248–258.

25. Ulsoy , A. G. , Peng , H. , and Çakmakci , M. Automotive Control Systems. Cambridge University Press , Cambridge , UK , 2014.

26. Zoz , F. M. and Grisso , R. D. Traction and tractor performance. In Agricultural Equipment Technology Conference. Louisville , USA , 2003 , ASAE Publication Number 913C0403.

27. Rumba , R. and Nikitenko , A. Development of free-flowing pile pushing algorithm for autonomous mobile feed-pushing robots in cattle farms. In Engineering for Rural Development. Jelgava , Latvia , 2018 , 958–963.
https://doi.org/10.22616/ERDev2018.17.N477

 
Back

Current Issue: Vol. 68, Issue 1, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December