headerpos: 9353
 
 
  Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Article Publication Charges
» Archival Policy
» Copyright and Licensing Policy
Guidelines for Authors
» Instructions to Authors
Guidelines for Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» 2007
» Back issues (full texts)
  in Google
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA
Keemia. Geoloogia
» ETERA_scan
Subscription Information
Internet Links
Support & Contact
Publisher
» Other Journals
» Staff

Calibrating water depths of Ordovician communities: lithological and ecological controls on depositional gradients in Upper Ordovician strata of southern Ohio and north-central Kentucky, USA; pp. 19–23

(Full article in PDF format) doi: 10.3176/earth.2015.04


Authors

Carlton E. Brett, Thomas J. Malgieri, James R. Thomka, Christopher D. Aucoin, Benjamin F. Dattilo, Cameron E. Schwalbach

Abstract

Limestone and shale facies of the Upper Ordovician Grant Lake Formation (Katian: Cincinnatian, Maysvillian) are well exposed in the Cincinnati Arch region of southern Ohio and north-central Kentucky, USA. These rocks record a gradual change in lithofacies and biofacies along a gently northward-sloping ramp. This gradient spans very shallow, olive-gray, platy, laminated dolostones with sparse ostracodes in the south to offshore, nodular, phosphatic, brachiopod-rich limestones and marls in the north. This study uses facies analysis in outcrop to determine paleoenvironmental parameters, particularly those related to water depth (e.g., position of the photic zone and shoreline, relative degree of environmental energy). Within a tightly correlated stratigraphic interval (the Mount Auburn and Straight Creek members of the Grant Lake Formation and the Terrill Member of the Ashlock Formation), we document the occurrence of paleoenvironmental indicators, including desiccation cracks and light-depth indicators, such as red and green algal fossils and oncolites. This permitted recognition of a ramp with an average gradient of 10–20 cm water depth per horizontal kilometer. Thus, shallow subtidal (“lagoonal”) deposits in the upramp portion fall within the 1.5–6 m depth range, cross-bedded grainstones representing shoal-type environments fall within the 6–18 m depth range and subtidal, shell-rich deposits in the downramp portion fall within the 20–30 m depth range. These estimates match interpretations of depth independently derived from faunal and sedimentologic evidence that previously suggested a gentle ramp gradient and contribute to ongoing and future high-resolution paleontologic and stratigraphic studies of the Cincinnati Arch region.

Keywords

paleobathymetry, Cincinnatian, faunal gradients, microendoliths, water depth.

References

Aigner , T. 1985. Storm depositional systems: dynamic strati­graphy in modern and ancient shallow-marine sequences. Lecture Notes in Earth Sciences , 3 , 1–174.

Aigner , T. & Reineck , H.-E. 1982. Proximality trends in modern storm sands from the Helgoland Bight (North Sea) and their implications for basin analysis. Senckenbergiana Maritima , 14 , 183–215.

Allison , P. A. & Wells , M. R. 2006. Circulation in large epicontinental seas: what is different and why? PALAIOS , 21 , 513–515.
http://dx.doi.org/10.2110/palo.2006.S06

Baarli , B. G. 1988. Bathymetric co-ordination of proximality trends and level bottom communities: a case study from the Lower Silurian of Norway. PALAIOS , 3 , 577–587.
http://dx.doi.org/10.2307/3514446

Beadle , S. C. & Johnson , M. E. 1986. Palaeoecology of Silurian cyclocrinitid algae. Palaeontology , 29 , 585–601.

Brett , C. E. , Baird , G. C. & Speyer , S. E. 1986. Storm-generated sedimentary units: tempestite proximality and event stratification in the Middle Devonian Hamilton Group of New York. In Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) in New York State (Brett , C. E. , ed.) , New York State Museum Bulletin , 457 , 129–156.

Brett , C. E. , Boucot , A. J. & Jones , B. 1993. Absolute depths of Silurian benthic assemblages. Lethaia , 26 , 25–40.
http://dx.doi.org/10.1111/j.1502-3931.1993.tb01507.x

Cressman , E. R. 1973. Lithostratigraphy and depositional environments of the Lexington Limestone (Ordovician) of central Kentucky. United States Geological Survey Professional Paper , 768 , 1–61.

Easthouse , K. A. & Driese , S. G. 1988. Paleobathymetry of a Silurian shelf system: application of proximality trends and trace-fossil distributions. PALAIOS , 3 , 473–486.
http://dx.doi.org/10.2307/3514721

Glaub , I. , Gektidis , M. & Vogel , K. 2002. Microboring from different North Atlantic shelf areas – variability of the euphotic zone extension and implications for paleodepth estimates. Courier Forschunginstitut Senckenberg , 237 , 25–37.

Holland , S. M. & Patzkowsky , M. E. 1996. Sequence strati­graphy and long-term lithologic change in the Middle and Upper Ordovician of the eastern United States. In Paleozoic Sequence Stratigraphy: Views from the North American Craton (Witzke , B. J. , Ludvigsen , G. A. & Day , J. E. , eds) , Geological Society of America Special Paper , 306 , 117–130.
http://dx.doi.org/10.1130/0-8137-2306-X.117

Holland , S. M. & Patzkowsky , M. E. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician) , Cincinnati , Ohio region , USA. PALAIOS , 22 , 392–407.
http://dx.doi.org/10.2110/palo.2006.p06-066r

Patzkowsky , M. E. & Holland , S. M. 2012. Stratigraphic Paleobiology: Understanding the Distribution of Fossil Taxa in Time and Space. University of Chicago Press , Chicago , 256 pp.
http://dx.doi.org/10.7208/chicago/9780226649399.001.0001

Schumacher , G. A. , Swinford , E. & Shrake , D. L. 1991. Lithostratigraphy of the Grant Lake Limestone and Grant Lake Formation (Upper Ordovician) in southwestern Ohio. Ohio Journal of Science , 91 , 56–68.

Scotese , C. R. & McKerrow , W. S. 1990. Revised world maps and introduction. In Palaeozoic Palaeogeography and Biogeography (McKerrow , W. S. & Scotese , C. R. , eds) , Geological Society of London Memoirs , 12 , 1–21.

Vogel , K. & Brett , C. E. 2009. Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region , USA: the early history of light-related microendolithic zonation. Palaeogeography , Palaeo­climatology , Palaeoecology , 281 , 1–24.
http://dx.doi.org/10.1016/j.palaeo.2009.06.032

Vogel , K. , Bundschuh , M. , Glaub , I. , Hofmann , K. , Radtke , G. & Schmidt , H. 1995. Hard substrate ichnocoenoses and their relation to light intensity and marine bathymetry. Neues Jahrbuch für Geologie und Paläontologie , Abhandlungen , 195 , 46–91.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:

No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December