headerpos: 9353
 
 
  Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Article Publication Charges
» Archival Policy
» Copyright and Licensing Policy
Guidelines for Authors
» Instructions to Authors
Guidelines for Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» 2007
» Back issues (full texts)
  in Google
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA
Keemia. Geoloogia
» ETERA_scan
Subscription Information
Internet Links
Support & Contact
Publisher
» Other Journals
» Staff

Pathways and mechanisms of Late Ordovician (Katian) faunal migrations of Laurentia and Baltica; pp. 62–67

(Full article in PDF format) doi: 10.3176/earth.2015.11


Authors

Adriane R. Lam, Alycia L. Stigall

Abstract

Late Ordovician strata within the Cincinnati Basin record a mass faunal migration event during the C4 and C5 depositional sequences. The geographic source region for the invaders and the paleoceanographic conditions that facilitated dispersal into the Cincinnati Basin has previously been poorly understood. Using Parsimony Analysis of Endemicity, biogeographic relationships among Laurentian and Baltic basins were analyzed for each of the C1–C5 depositional sequences to identify dispersal paths. The results support multiple dispersal pathways, including three separate dispersal events between Baltica and Laurentia. Within Laurentia, results support dispersal pathways between areas north of the Transcontinental Arch into the western Midcontinent, between the Upper Mississippi Valley into the Cincinnati Basin, and between the peri-cratonic Scoto-Appalachian Basin and the Cincinnati Basin. These results support the hypothesis that invasive taxa entered the Cincinnati Basin via multiple dispersal pathways and that the equatorial Iapetus current facilitated dispersal of organisms from Baltica to Laurentia. Within Laurentia, surface currents and large storms moving from northeast to southwest likely influenced the dispersal of organisms. Larval states were characterized for the Richmondian invaders, and most invaders were found to have had planktotrophic planktic larvae. These self-feeding larvae have high dispersal potential, which – in conjunction with oceanographic and climatic conditions – enabled long-distance dispersal and interbasinal species migrations.

Keywords

Parsimony Analysis of Endemicity, dispersal, Cincinnatian, Richmondian Invasion, biogeography, larvae, paleoceanography.

References

Anstey , R. L. 1986. Bryozoan provinces and patterns of generic evolution and extinction in the Late Ordovician of North America. Lethaia , 19 , 33–51.
http://dx.doi.org/10.1111/j.1502-3931.1986.tb01898.x

Bauer , J. E. & Stigall , A. L. 2014. Phylogenetic paleobiogeography of Late Ordovician Laurentian brachiopods. Estonian Journal of Earth Sciences , 63 , 189–194.
http://dx.doi.org/10.3176/earth.2014.17

Bergström , S. M. , Young , S. & Schmitz , B. 2010. Katian (Upper Ordovician) δ13C chemostratigraphy and sequence stratigraphy in the United States and Baltoscandia: a regional comparison. Palaeogeography , Palaeo­climatology , Palaeoecology , 296 , 217–234.
http://dx.doi.org/10.1016/j.palaeo.2010.02.035

Chatterton , B. D. E. & Speyer , S. E. 1989. Larval ecology , life history strategies , and patterns of extinction and survivorship among Ordovician trilobites. Paleobiology , 15 , 118–132.

Cocks , L. R. M. & Torsvik , T. H. 2011. The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins. Earth-Science Reviews , 106 , 1–51.
http://dx.doi.org/10.1016/j.earscirev.2011.01.007

Congreve , C. R. & Lieberman , B. S. 2010. Phylogenetic and biogeographic analysis of deiphonine trilobites. Journal of Paleontology , 84 , 128–136.
http://dx.doi.org/10.1666/09-026.1

Elias , R. J. 1983. Middle and Late Ordovician solitary rugose corals of the Cincinnati Arch region. U.S. Geological Survey Professional Paper , 1066-N , N1–N13.

Ettensohn , F. R. 2010. Origin of Late Ordovician (mid-Mohawkian) temperate-water conditions on southeastern Laurentia: glacial or tectonic? Geological Society of America Special Paper , 466 , 163–175.

Foerste , A. F. 1912. The Arnheim Formation within the areas traversed by the Cincinnati Geanticline. Ohio Naturalist , 12 , 429–456.

Fortey , R. A. & Cocks , L. R. 2005. Late Ordovician global warming – the Boda event. Geology , 33 , 405–408.
http://dx.doi.org/10.1130/G21180.1

Freeman , G. & Lundelius , J. W. 2005. The transition from planktotrophy to lecithotrophy in larvae of Lower Palaeozoic rhynchonelliform brachiopods. Lethaia , 38 , 219–254.
http://dx.doi.org/10.1080/00241160510013330

Hammer , Ø. , Harper , D. A. T. & Ryan , P. D. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica , 4 , 1–9.

Herrmann , A. D. , Haupt , B. J. , Patzkowsky , M. E. , Deidov , D. & Slingerland , R. L. 2004. Response of Late Ordovician paleoceanography to changes in sea level , continental drift , and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography , Palaeo­climatology , Palaeoecology , 210 , 385–401.
http://dx.doi.org/10.1016/j.palaeo.2004.02.034

Holland , S. M. 1997. Using time/environment analysis to recognize faunal events in the Upper Ordovician of the Cincinnati Arch. In Paleontological Event Horizons: Ecological and Evolutionary Implications (Brett , C. E. & Baird , G. C. , eds) , pp. 309–334. Columbia University Press , New York.

Holland , S. M. & Patzkowsky , M. E. 1996. Sequence strati­graphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the eastern United States. In Paleozoic Sequence Stratigraphy: Views from the North American Craton (Witzke , B. J. , Ludvigson , G. A. & Day , J. , eds) , Geological Society of America Special Paper , 306 , 117–129.

Jin , J. 2001. Evolution and extinction of the North American Hiscobeccus brachiopod Fauna during the Late Ordovician. Canadian Journal of Earth Sciences , 38 , 143–151.
http://dx.doi.org/10.1139/cjes-38-2-143

Jin , J. , Harper , D. A. , Cocks , L. R. M , McCausland , P. J. , Rasmussen , C. M. Ø. & Sheehan , P. M. 2013. Precisely locating the Ordovician equator in Laurentia. Geology , 41 , 107–110.
http://dx.doi.org/10.1130/G33688.1

Peterson , K. J. 2005. Macroevolutionary interplay between planktic larvae and benthic predators. Geology , 33 , 929–932.
http://dx.doi.org/10.1130/G21697.1

Popov , L. E. , Ghobadi Pour , M. , Kebria-Ee Zadeh , M.-R. & Shahbeik , S. 2011. The first record of silicified Cambrian (Furongian) rhynchonelliform brachiopods from the Mila Formation , Alborz Range , Iran. Memoirs of the Association of Australasian Palaeontologists , 42 , 193–207.

Poussart , P. F. , Weaver , A. J. & Barnes , C. R. 1999. Late Ordovician glaciation under high atmospheric CO2: a coupled model analysis. Paleoceanography , 14 , 542–558.
http://dx.doi.org/10.1029/1999PA900021

Radford , B. , Babcock , R. , Van Niel , K. & Done , T. 2014. Are cyclones agents for connectivity between reefs? Journal of Biogeography , 41 , 1367–1378.
http://dx.doi.org/10.1111/jbi.12295

Rosen , B. R. & Smith , A. B. 1988. Tectonics from fossils? Analysis of reef-coral and sea-urchin distributions from late Cretaceous to Recent , using a new method. Geological Society of London , Special Papers , 37 , 275–306.

Treml , E. A. , Halpin , P. N. , Urban , D. L. & Pratson , L. F. 2008. Modeling population connectivity by ocean currents , a graph-theoretic approach for marine conservation. Landscape Ecology , 23 , 19–36.
http://dx.doi.org/10.1007/s10980-007-9138-y

Valentine , J. W. & Jablonski , D. 1983. Larval adaptations and patterns of brachiopod diversity in space and time. Evolution , 5 , 1052–1061.
http://dx.doi.org/10.2307/2408418

Webby , B. D. , Elias , R. J. , Young , G. A. , Neuman , B. E. E. & Kaljo , D. 2004. Corals. In The Great Ordovician Biodiversification Event (Webby , B. D. , Paris , M. L. & Droser , I. G. , eds) , pp. 124–146. Columbia University Press , New York.

Wright , D. F. & Stigall , A. L. 2013. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics , speciation , and biotic invasions. PLoS ONE , 8 , e68353.
http://dx.doi.org/10.1371/journal.pone.0068353

Wright , D. F. & Stigall , A. L. 2014. Species-level phylo­genetic revision of the Ordovician orthide brachiopod Glyptorthis from North America. Journal of Systematic Palaeontology , 12 ,
http://dx.doi.org/10.1080/14772019.2013.839584

Young , S. A. , Saltzman , M. R. , Bergström , S. M. , Leslie , S. A. & Xu , C. 2008. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian–Katian) carbonates in North America and China: implications for paleoceanographic change. Palaeogeography , Palaeoclimatology , Palaeoecology , 270 , 166–178.
http://dx.doi.org/10.1016/j.palaeo.2008.09.006

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:

No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December