headerpos: 9353
 
 
  Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Article Publication Charges
» Archival Policy
» Copyright and Licensing Policy
Guidelines for Authors
» Instructions to Authors
Guidelines for Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
Vol. 60, Issue 4
Vol. 60, Issue 3
Vol. 60, Issue 2
Vol. 60, Issue 1
» 2010
» 2009
» 2008
» 2007
» Back issues (full texts)
  in Google
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA
Keemia. Geoloogia
» ETERA_scan
Subscription Information
Internet Links
Support & Contact
Publisher
» Other Journals
» Staff

Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009; pp. 50–64

(Full article in PDF format) doi: 10.3176/earth.2011.1.05


Authors

Ruibo Lei, Matti Leppäranta, Ants Erm, Elina Jaatinen, Ove Pärn

Abstract

A field programme on light conditions in ice-covered lakes and optical properties of lake ice was performed in seven lakes of Finland and Estonia in February–April 2009. On the basis of irradiance measurements above and below ice, spectral reflectance and transmittance were determined for the ice sheet; time evolution of photosynthetically active radiation (PAR) transmittance was examined from irradiance recordings at several levels inside the ice sheet. Snow cover was the dominant factor for transmission of PAR into the lake water body. Reflectance was 0.74–0.92 in winter, going down to 0.18–0.22 in the melting season. The bulk attenuation coefficient of dry snow was 14–25 m–1; the level decreased as the spring was coming. The reflectance and bulk attenuation coefficient of snow-free ice were 0.1–0.4 and 1–5 m–1. Both were considerably smaller than those of snow cover. Seasonal evolution of light transmission was mainly due to snow melting. Snow and ice cover not only depress the PAR level in a lake but also influence the spectral and directional distribution of light.

Keywords

lake ice, snow, optics, reflectance, transmittance, attenuation coefficient.

References

Arst , H. , Erm , A. , Leppäranta , M. & Reinart , A. 2006. Radiative characteristics of ice-covered fresh- and brackish-water bodies. Proceedings of the Estonian Academy of Sciences , Geology , 55 , 3–23.

Arst , H. , Erm , A. , Herlevi , A. , Kutser , T. , Leppäranta , M. , Reinart , A. & Virta , J. 2008. Optical properties of boreal lake water in Finland and Estonia. Boreal Environment Research , 13 , 133–158.

Bolsenga , S. J. 1981. Radiation transmittance through lake ice in the 400–700 nm range. Journal of Glaciology , 27(95) , 57–66.

Bolsenga , S. J. 1983. Spectral reflectances of snow and fresh-water ice from 340 through 1100 nm. Journal of Glaciology , 29(102) , 296–305.

Jakkila , J. , Leppäranta , M. , Kawamura , T. , Shirasawa , K. & Salonen , K. 2009. Radiation transfer and heat budget during the ice season in Lake Pääjärvi , Finland. Aquatic Ecology , 43 , 681–692.
doi:10.1007/s10452-009-9275-2

Jonas , T. , Terzhevik , A. Y. , Mironov , D. V. & Wüest , A. 2003. Radiatively driven convection in an ice-covered lake investigated by using temperature microstructure technique. Journal of Geophysical Research , 108(C6) , 3183.
doi:10.1029/2002JC001316

Kärkäs , E. 2000. The ice season of Lake Pääjärvi in southern Finland. Geophysica , 36 , 85–94.

Kaup , E. 1995. Solar radiation in water bodies. In The Schirmacher Oasis , Queen Maud Land , East Antarctica and Its Surroundings (Bormann , P. & Fritsche , D. , eds) , pp. 286–290. Justus Perthes Verlag Gotha.

Kouraev , A. V. , Semovski , S. V. , Shimaraev , M. N. , Mognard , N. M. , Légresy , B. & Remy , F. 2007. Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sensing of Environment , 108 , 240–253.
doi:10.1016/j.rse.2006.11.010

Kuusisto , E. 1994. The thickness and volume of lake ice in Finland in 1961–90. Publications of the Water and Environmental Research Institute , 17 , 27–36.

Launiainen , J. & Cheng , B. 1998. Modelling of ice thermo­dynamics in natural water bodies. Cold Regions Science and Technology , 27 , 153–178.
doi:10.1016/S0165-232X(98)00009-3

Leppäranta , M. 2009a. Modelling of formation and decay of lake ice. In Impact of Climate Change on European Lakes (George , G. , ed.) , pp. 63–83. Springer-Verlag , Dordrecht.

Leppäranta , M. 2009b. A two-phase model for thermo­dynamics of floating ice. In Proceedings of the 6th Workshop on Baltic Sea Ice Climate (Leppäranta , M. , ed.) , Report Series in Geophysics , 61 , 146–154. Department of Physics , University of Helsinki , Helsinki , Finland.

Leppäranta , M. & Kosloff , P. 2000. The thickness and structure of Lake Pääjärvi ice. Geophysica , 36 , 233–248.

Leppäranta , M. , Reinart , A. , Erm , A. , Arst , H. , Hussainov , M. & Sipelgas , L. 2003. Investigation of ice and water properties and under-ice light fields in fresh and brackish water bodies. Nordic Hydrology , 34 , 245–266.

Leppäranta , M. , Terzhevik , A. & Shirasawa , K. 2010. Solar radiation and ice melting in Lake Vendyurskoe , Russian Karelia. Hydrology Research , 41 , 50–62.
doi:10.2166/nh.2010.122

Nicolaus , M. , Hudson , S. R. , Gerland , S. & Munderloh , K. 2010. A modern concept for autonomous and continuous measurements of spectral albedo and transmittance of sea ice. Cold Regions Science and Technology , 62 , 14–28.
doi:10.1016/j.coldregions.2010.03.001

Nõges , T. 2004. Reflection of the changes of the North Atlantic Oscillation Index and the Gulf Steam Position Index in the hydrology and phytoplankton of Võrtsjärv , a large , shallow lake in Estonia. Boreal Environment Research , 9 , 401–407.

Perovich , D. K. 1998. The optical properties of the sea ice. In Physics of Ice-Covered Seas (Leppäranta , M. , ed.) , pp. 195–230. Helsinki University Printing House , Helsinki.

Perovich , D. K. , Grenfell , T. C. , Light , B. & Hobbs , P. V. 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. Journal of Geophysical Research , 107(C10) , 8044.
doi:10.1029/2000JC000438

Rasmus , K. , Ehn , J. , Granskog , M. , Kärkäs , E. , Leppäranta , M. , Lindfors , A. , Pelkonen , A. , Rasmus , S. & Reinart , A. 2002. Optical measurements of sea ice in the Gulf of Finland. Nordic Hydrology , 33 , 207–226.

Reid , A. & Crout , N. 2008. A thermodynamic model of freshwater Antarctic lake ice. Ecological Modeling , 210 , 231–241.
doi:10.1016/j.ecolmodel.2007.07.029

Reinart , A. & Pärn , O. 2006. Ice conditions of a large shallow lake (Lake Peipsi) determined by observations , an ice model , and satellite images. Proceedings of the Estonian Academy of Sciences , Biology , Ecology , 55 , 243–261.

Reinart , A. , Arst , H. , Blanco-Sequeiros , A. & Herlevi , A. 1998. Relation between underwater irradiance and quantum irradiance in dependence on water transparency at different depths in the water bodies. Journal of Geophysical Research , 103(C4) , 7749–7752.
doi:10.1029/97JC03645

Wang , C. , Shirasawa , K. , Leppäranta , M. , Ishikawa , M. , Huttunen , O. & Takatsuka , T. 2005. Solar radiation and ice heat budget during winter 2002–2003 in Lake Pääjärvi , Finland. Verhandlungen IVL , 29 , 414–417.
 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:

No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December