headerpos: 9507
 
 
  Estonian Journal of Engineering

ISSN 1736-7522 (electronic)  ISSN 1736-6038  (print)

 An international scientific journal
Formerly: Proceedings of the Estonian Academy of Sciences Engineering
(ISSN 1406-0175)
Published since 1995

Estonian Journal of Engineering

ISSN 1736-7522 (electronic)  ISSN 1736-6038  (print)

 An international scientific journal
Formerly: Proceedings of the Estonian Academy of Sciences Engineering
(ISSN 1406-0175)
Published since 1995

Publisher
Journal Information
» Abstracting/Indexing
List of Issues
» 2013
» 2012
» 2011
» 2010
» 2009
Vol. 15, Issue 4
Vol. 15, Issue 3
Vol. 15, Issue 2
Vol. 15, Issue 1
» 2008
» 2007
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other Journals
» Staff

Mathematical modelling of heat exchange between the coating sprayed by explosion and the surface; pp. 340–348

(Full article in PDF format) doi: 10.3176/eng.2009.4.11


Authors

Jonas Vilys, Antanas Ciuplys, Vytautas Ciuplys

Abstract

A huge drawback of classical electro-impulse metallization is that only internal cylindrical surfaces of components may be metallized up to 120 mm diameter. In order to eliminate this drawback, a special diverter, which permits to form coatings both on the internal and external profiles and plane surfaces, has been developed. One of the most important properties of any coating is adhesion. The most significant factor, which influences the adhesion of the obtained coating, is the temperature of contact at the coated surface. It is impossible to experimentally measure the temperature of contact, therefore, calculations were carried out with a mathematical model. The obtained results reveal that the interaction of the sprayed coating with the coated surface is close to 100%. Therefore the adhesion of coatings, sprayed by directional electro-impulse metallization method, is several times higher compared with the coatings obtained by plasma and electric arc spray methods.

Keywords

explosion spraying, coatings, temperature, mathematical modelling, surface hardening.

References

  1. Sun , Y. and Bell , T. Plasma surface engineering of a low-alloy steel. Mater. Sci. Eng. A , 1991 , 140 , 419–434.
doi:10.1016/0921-5093(91)90458-Y

  2. Wang , J. , Zhang , G. , Sun , J. , Bao , Y. , Zhuang , L. and Ning , H. Low temperature nitriding of iron by alternating current pretreatment. Surf. Coat. Technol. , 2006 , 200 , 6666–6670.
doi:10.1016/j.surfcoat.2005.09.035

  3. Menthe , E. , Bulak , A. , Olfe , J. , Zimmermann , A. and Rie , K. T. Improvement of the mechanical properties of steel after plasma nitriding. Surf. Coat. Technol. , 2000 , 133 , 259–263.
doi:10.1016/S0257-8972(00)00930-0

  4. Vilys , J. S. , Čiuplys , V. J. , Terentjev , V. , Kolmakov , A. and Kvedaras , V. Particularities of Plastic Deformation of Metals Near Surface Layers. Technologija , Kaunas , 2003.

  5. Pierlot , C. , Pawlowski , L. , Bigan , M. and Chagnon , P. Design of experiments in thermal spraying: a rewiew. Surf. Coat. Technol. , 2008 , 202 , 4483–4490.
doi:10.1016/j.surfcoat.2008.04.031

  6. Mizusako , F. , Tamura , H. , Horioka , K. and Harada , Y. Zr-O-B ceramics/Ni-20 % Cr alloy graded coating produced by electrothermal explosion spraying. Surf. Coat. Technol. , 2004 , 187 , 257–264.
doi:10.1016/j.surfcoat.2004.02.031

  7. Sarathi , R. , Sindhu , T. K. , Chakravarthy , S. R. , Sharma , A. and Nagesh , K. V. Generation and characterization of nano-tungsten particles formed by wire explosion process. J. Alloys Compd. , 2009 , 475 , 658–663.
doi:10.1016/j.jallcom.2008.07.092

  8. Broszeit , E. , Matthes , B. , Herr , W. and Kloos , K. H. Tribological properties of r.f. sputtered Ti-B-N coatings under various pin-on-disc wear test conditions. Surf. Coat. Technol. , 1993 , 58 , 29–35.
doi:10.1016/0257-8972(93)90171-J

  9. Negishi , H. , Kuroiwa , Y. , Akamine , H. , Aoyagi , S. , Sawada , A. , Shobu , T. , Negishi , S. and Sasaki , M. CDW-induced negative thermal expansion in two-dimensional conductor
η-Mo4O11. Solid State Commun. , 2003 , 125 , 45–49.
doi:10.1016/S0038-1098(02)00625-7

10. Heau , C. , Guillon , N. , Fillit , R. Y. and Machet , J. Ultra-hard Ti-B-N coatings obtained by magnetron sputtering. Surf. Coat. Technol. , 1997 , 97 , 60–65.
doi:10.1016/S0257-8972(97)00191-6

11. Reisel , G. and Wielage , B. High temperature oxidation behavior of HVOF-sprayed unrein­forced and reinforced molybdenum disilicide powders. Surf. Coat. Technol. , 2001 , 146–147 , 19–26.
doi:10.1016/S0257-8972(01)01364-0

12. Kramer , I. R. Surface layer effects on the mechanical behaviour of metals. Adv. Mech. Phys. Surf. , 1986 , 3 , 109–260.

13. Liu , Z. D. , Li , B. , Wang , Z. Q. , Liu , J. J. and Ji , W. Microstructure and grain abrasion properties of TiC-xNi coatings prepared by electro-thermal explosion ultra-high speed spraying. Advances in fracture and materials behavior. Adv. Mat. Res. , 2008 , 33–37 , 489–494.
doi:10.4028/www.scientific.net/AMR.33-37.489

14. Newbery , A. P. , Rayment , T. and Grant , P. S. A particle image velocimetry investigation of in-flight and deposition behaviour of steel droplets during electric arc sprayforming. Mater. Sci. Eng. , A. , 2004 , 383 , 137–145.
doi:10.1016/j.msea.2004.02.043

15. Planche , M. P. , Liao , H. and Coddet , C. Relationships between in-flight particle characteristics and coating microstructure with a twin wire arc spray process and different working conditions. Surf. Coat. Technol. , 2004 , 182 , 215–226.
doi:10.1016/S0257-8972(03)00873-9

16. Jin , G , Xu , B. S. , Wang , H. D. , Li , Q. F. and Wei , S. C. Microstructure and tribological properties of stainless steel coatings sprayed by two methods based on spraying. Surf. Coat. Technol. , 2007 , 201 , 5261–5263.
doi:10.1016/j.surfcoat.2006.07.141

17. Liu , G. , Rozniatowski , K. and Kurzydlowski , K. J. Quantitative characteristics of FeCrAl films deposited by arc and high-velocity arc spraying. Mater. Charact. , 2001 , 46 , 99–104.
doi:10.1016/S1044-5803(01)00108-5

18. Mizusako , F. , Tamura , H. and Kondo , K. I. Radiographic characterization of thermal spray jets produced by electrothermal explosion of ceramic powders. Jpn. J. Appl. Phys. , 2005 , 44 , 422–429.
doi:10.1143/JJAP.44.422

19. Kwon , Y. S. , An , V. V. , Ilyin , A. P. and Tikhonov , D. V. Properties of powders produced by electrical explosions of copper–nickel alloy wires. Mater. Lett. , 2007 , 61 , 3247–3250.
doi:10.1016/j.matlet.2006.11.047

20. Jin , G. , Xu , B. S. , Wang , H. D. , Li , Q. F. and Wei , S. C. Tribological properties of molybdenum coatings sprayed by electro-thermal explosion directional spraying. Surf. Coat. Technol. , 2007 , 201 , 6678–6680.
doi:10.1016/j.surfcoat.2006.09.028

21. Wei , S. C. , Xu , B. S. , Wang , H. D. , Jin , G. and Hong , L. Comparison on corrosion-resistance performance of electro-thermal explosion plasma spraying FeAl-based coatings. Surf. Coat. Technol. , 2007 , 201 , 5294–5297.
doi:10.1016/j.surfcoat.2006.07.100

22. Padgurskas , J. , Snitka , V. , Jankauskas , V. and Andriusis , A. Selective transfer phenomenon in lubricated sliding surfaces with copper and its alloy coatings made by electro-pulse spraying. Wear , 2006 , 260 , 652–661.
doi:10.1016/j.wear.2005.03.033

23. Jankauskas , V. , Padgurskas , J. and Andriusis , A. Investigation of tribological behaviour of electropulse sprayed copper alloy coatings. In Scientific Papers of the Institute of Machine Desing and Operation of the Wroclaw University of Technology , 2002 , 87 , 113–118.

24. Andriusis , A. , Jankauskas , V. and Zunda , A. Investigation of electroimpulse sprayed copper alloy coatings. Mater. Sci. (Medžiagotyra) , 2002 , 8 , 177–182.

 
Back

Current Issue: Vol. 19, Issue 4, 2013





Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December