headerpos: 9507
 
 
  Estonian Journal of Engineering

ISSN 1736-7522 (electronic)  ISSN 1736-6038  (print)

 An international scientific journal
Formerly: Proceedings of the Estonian Academy of Sciences Engineering
(ISSN 1406-0175)
Published since 1995

Estonian Journal of Engineering

ISSN 1736-7522 (electronic)  ISSN 1736-6038  (print)

 An international scientific journal
Formerly: Proceedings of the Estonian Academy of Sciences Engineering
(ISSN 1406-0175)
Published since 1995

Publisher
Journal Information
» Abstracting/Indexing
List of Issues
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» 2007
Vol. 13, Issue 4
Vol. 13, Issue 3
Vol. 13, Issue 2
Vol. 13, Issue 1
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other Journals
» Staff

A new instrument for remote sensing of thermal anomalies, based on minimal thermal change detection; 384–393

(Full article in PDF format)


Authors

Volker Tank

Abstract

Thermal anomalies are phenomena of unexpected thermal behaviour, caused by thermal effects unknown in the first instance. In land and water bodies these may origin, for example, from gases emerging from deep reservoirs or from springs, submerged in water bodies. Their surface thermal impact is superimposed to the environmental thermal impact and dampens the changes induced by the latter. The method of minimal thermal change detection utilizes this effect to identify and investigate such events. It applies repeated acquisition of congruent infrared images of areas of interest under changing thermal environment. From these images, regions of low thermal change are identified. Application to natural CO2 vents resulted in their reliable localization. Tools for the measurement of vent gas flux and temperatures were developed and successfully applied.

Keywords

thermal anomalies, gas vents, gas flux.

References

1. Mörner , N.-A. and Etiope , G. Carbon degassing from the lithosphere. Global and Planetary Change , 2002 , 33 , 185–203.
doi:10.1016/S0921-8181(02)00070-X

2. Raschi , A. , Vaccari , F. , Tognetti , R. and van Gardingen , P. R. (eds.). Plant Response to Elevated CO2. Cambridge University Press , Cambridge , 1997.

3. Vodnik , D. , Pfanz , H. , Wittmann , C. , Maĉek , I. , Kastelec , D. , Turk , B. and Batiĉ , F. Photo­synthetic acclimation in plants growing near a carbon dioxide spring. Phyton , 2002 , 42 , 239–244.

4. Pfanz , H. , Vodnik , D. , Wittmann , Ch. , Aschan , G. and Raschi , A. Plants and geothermal CO2 exhalations – survival and adaptation to a high CO2 environment. In Progr. Botany , 2004 , 65 , 499–538.

5. Weinlich , F. H. , Tesař , J. , Weise , S. M. , Bräuer , K. and Kämpf , H. Gas flux distribution in mineral springs and tectonic structure in the western Eger Rift. J. Czech. Geol. Soc. , 1998 , 43 , 1–2.

6. Tank , V. Verfahren zum Feststellen von Gasaustritten an der Erdoberfläche und Anordnung zu dessen Durchführung. European Patent 04 787 022.5 , filed 2003 , issued 2007.
 
Back

Current Issue: Vol. 19, Issue 4, 2013





Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December